Hollow-Core Photonic Crystal Fiber Based on C2H2 and NH3 Gas Sensor

2013 ◽  
Vol 411-414 ◽  
pp. 1577-1580
Author(s):  
Bao Qun Wu ◽  
Ying Lu ◽  
Cong Jing Hao ◽  
Liang Cheng Duan ◽  
Nan Nan Luan ◽  
...  

In this paper, we propose a new hollow-core photonic crystal fiber, which can be available for gas sensor. In addition, properties of the fiber are analyzed at the wavelength of C2H2and NH3absorption peak 1530nm and 1967nm, respectively. For both wavelengths, relative sensitivity coefficients are higher than 0.95, which makes sense in gas sensing. We also get relationship between relative sensitivity coefficient and radius of fiber core, as well as effective refractive index of the mode field.

2021 ◽  
Vol 1 (1) ◽  
pp. 23-29
Author(s):  
R. Boufenar ◽  
M. Bouamar ◽  
A. Hocini

Monitoring methane (CH4) concentration is essential in many industrial and environmental applications. Emission of such gases is indeed important to detect for health, safety and environmental reasons. The major risk in all these areas is an explosion hazard, which may occur if methane reaches its Lower Explosive Limit (LEL) of5% concentration in air. For that reason, it is necessary to develop gas sensors to monitor that methane levels below this value. Due to a weak absorption of methane, this gas is difficult to detect using conventional methods.Hollow core photonic crystal fibers (HC-PBF) have emerged as a promising technology in the field of gas sensing. The strong interaction achievable with these fibers are especially advantageous for the detection of weakly absorbing regions of methane. In this paper, we investigated, by full vectorial finite element method (FV-FEM) in Rsoft CAD environment, the dependency of relative sensitivity on the fiber parameters and wavelength. Consequently, we introduced the optimal structureof an index guiding hollow core photonic crystal fiber capable of measuring methane concentrations down to 0.1%in air. The simulations showed that the sensing sensitivity increased with an increase in the core diameter and a decrease in the distance between centers of two adjacent holes.


2014 ◽  
Vol 50 (12) ◽  
pp. 1-8 ◽  
Author(s):  
Majid Ebnali-Heidari ◽  
Farshid Koohi-Kamali ◽  
Aliakbar Ebnali-Heidari ◽  
Mohammad Kazem Moravvej-Farshi ◽  
Boris T. Kuhlmey

2011 ◽  
Vol 36 (9) ◽  
pp. 1731 ◽  
Author(s):  
Wei Chang Wong ◽  
Chi Chiu Chan ◽  
Li Han Chen ◽  
Zhi Qiang Tou ◽  
Kam Chew Leong

2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
A. Abbaszadeh ◽  
S. Makouei ◽  
S. Meshgini

A new triangular photonic crystal fiber with a based microstructure core gas sensor has been proposed for the wavelength range from 1.1μm to 1.7μm. The guiding trait of the proposed structure depends on geometric parameters and wavelength, which are numerically studied by the finite element method. According to the results, the relative sensitivity obtained as high as 75.14% at 1.33μm wavelength. high birefringence and effective area are also obtained by order of 3.75×10-3 and 14.07 μm2 finally, low confinement loss of 1.41×10-2 dB/m is acquired at the same wavelength. The variation of the diameters in the cladding and core region is investigated and the results show that this structure has good stability for manufacturing goals. Since the results show the highest sensitivity at wavelengths around 1.2μm to 1.7μm, which is the absorption line of many gases such as methane (CH4), hydrogen fluoride (HF), ammonia (NH3), this gas sensor can be used for medical and industrial applications.


2014 ◽  
Vol 11 (3) ◽  
pp. 1250-1256
Author(s):  
Baghdad Science Journal

Hollow core photonic bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. Dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in the silica/air microstructures, and partly due to the possibility of making complex refractive-index structure over the fiber cross section. In this paper the fundamental physical mechanism has been discussed determining the dispersion properties of PCFs, and the dispersion in a gas filled hollow core photonic crystal fiber has been calculated. We calculate the dispersion of air filled hollow core photonic crystal fiber, also calculate the dispersion of N2 gas filled hollow core photonic crystal fiber and finally we calculate the dispersion of He gas filled hollow core photonic crystal fiber.


2020 ◽  
Vol 30 (4) ◽  
pp. 331
Author(s):  
Vu Tran Quoc ◽  
Trang Chu Thi Gia ◽  
Minh Le Van ◽  
Thuy Nguyen Thi ◽  
Phuong Nguyen Thi Hong ◽  
...  

In this paper, a photonic crystal fiber (PCF) with core infiltrated with Nitrobenzene is proposed and investigated. Its feature properties as the effective refractive index, effective mode area, chromatic dispersion, and confinement loss have been numerically simulated. The obtained results show that characteristic quantities of PCF with core infiltrated with Nitrobenzene (PCF-N) having some advantages in comparison to PCF with core infiltrated with Toluene (PCF-T) at 1.55μm wavelength. For the purpose of supercontinuum generation, two optimal structures with lattice constants 2.0μm and 2.5μm with filling factors d/Ʌ = 0.3 are identified.


2016 ◽  
Vol 24 (13) ◽  
pp. 14086 ◽  
Author(s):  
Nicholas L. P. Andrews ◽  
Rachel Ross ◽  
Dorit Munzke ◽  
Camiel van Hoorn ◽  
Andrew Brzezinski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document