A Standing Wave Piezoelectric Ultrasonic Motor Using a Single Flexural Vibration Ring Transducer

2013 ◽  
Vol 415 ◽  
pp. 126-131
Author(s):  
M. Shafik ◽  
L. Makombe

This paper presents a rotary standing wave ultrasonic motor using single flexural vibration ring transducer. The motor consists of three main components, the stator, rotor and housing unit. The stator is a piezoelectric transducer ring. The rotor is designed of a compact driving wheel and shaft. The housing unit is made of a transparent thermoplastic Perspex material and is part of the motor working mechanism. The motor design, structure, working principles and modelling using finite element analysis is discussed and presented in this paper. A prototype of the motor was fabricated and its characteristics measured. Experimental tests showed that the motor electrical working parameters are: Current: 100 m-amps, Voltage: 100 volts, Frequency: 41.7 kHz, typical speed of 32 revolutions per minute, a resolution of less than 50μm and maximum load of 1.5 Newton.

2013 ◽  
Vol 307 ◽  
pp. 31-41
Author(s):  
M. Shafik ◽  
B. Nyathi ◽  
S. Fekkai

This paper presents a 3D piezoelectric ultrasonic motor using a single Flexural Vibration Ring Transducer. The motor consists of three main parts, the rotor, the stator and the housing unit. The stator is a piezoelectric transducer ring made from PZT S42 material. Three steel rods and a magnet were designed to support the rotor. The rotor is a sphere of metal that rests on the stator intersecting at the tips of the steel rods and the magnet. The housing unit is made of Perspex, a transparent thermoplastic material. Longitudinal and bending vibration modes, of oscillating structures are superimposed in the motor, generating elliptical micro motions at the driving tips. Pressing the rotor against the stator tips the micro motions are converted into a 3D rotational motion, via the friction between the tips of the three rods and the rotor. The motor structures, working principles, design and finite element analysis are discussed in this paper. A prototype of the motor was fabricated and its characteristics measured. Experimental tests show typical speed of movement equal to 35 revolutions per minute, a resolution of less than 5μm and maximum load of 3.5 Newton.


Author(s):  
Mahmoud Shafik ◽  
Anne Lechevretel

This paper presents a piezoelectric ultrasonic atomisation device for passive humidification device intensive care patient applications. The atomisation system is aiming to improve the passive humidification device heat and moisture exchange (HME) materials performance, by recovering the accumulated moisture, for a greater patient care. The atomisation device design, structure, working principles and analysis using finite element analysis (FEA) is discussed and presented in this paper. The computer simulation and modelling using FEA for the atomisation device has been used to examine the device design structure. It enabled to select the material of the vibration transducer, investigate the material deformation, defining the operating parameters and establish the working principles of the device. A working prototype has been fabricated to test the device, technical parameters, performance and practicality to utilise in such applications. Experimental tests showed that the electrical working parameters of the device are: Current: 50 m-amps, Voltage: 50 volts, Frequency: 41.7 kHz. The device integrated into the passive humidification device unit and initial results show some improvement in the HME materials and moisture return of the device by 2.5 mg per litre H2O.


Author(s):  
M. Shafik ◽  
L. Makombe ◽  
B. Mills

A rotary standing wave ultrasonic motor using single flexural ring transducer is developed and presented in this paper. The motor consists of three main components, the stator, rotor and housing unit. The stator is a piezoelectric transducer ring. The rotor is designed of a compact driving wheel and the shaft. The housing unit is made of a transparent thermoplastic Perspex material and is part of the motor working mechanism. The motor design, structure, working principles and modelling using finite element analysis is discussed and presented in this paper. The simulation and modelling using finite element analysis for the motor is used in the motor design development process. Finite element has been used to examine the motor structure by performing an algebraic solution of a set of equations, describing an ideal model structure, with a finite number of variables. The established simulation and modelling for ultrasonic motor using finite element analysis enabled to select the material of the flexural transducer ring, investigate the material deformation, defining the operating parameters for the motor and establish the principles of motion. The motor working principles is based on creating travelling waves vibration modes, of oscillating structures that are superimposed in the stator, generating elliptical micro motions at the stator tips. Pressing the rotor against the stator tips, using an elastic spring, the micro motions are converted into a rotary motion via the friction between the tips of the stator and the rotor. A prototype of the motor was fabricated and its characteristics measured. Experimental tests showed that the electrical working parameters are: Current: 100 m-amp’s, Voltage: 100 volts, Frequency: 41.7kHz, typical speed of movement: 32 revolutions per minute, a resolution of less than 50μm and maximum load of 1.5 Newton.


Author(s):  
M. Shafik

This paper presents a standing wave piezoelectric ultrasonic using a flexural vibration transducer. The motor consists of three main parts, stator, rotor and sliding element. The stator is a single piezoceramic flexural vibration bar. The rotor is made up of the motor driving wheel and the shaft. A computer simulation and modelling using finite element analysis for the proposed motor is discussed and used in the motor design development process. Finite element analysis has been used to evaluate the motor structure by performing an algebraic solution of a set of equations, describing an ideal model structure, with a finite number of variables. The established simulation and modelling for ultrasonic motor using finite element analysis enabled to select, the material of the flexural transducer, defining the operating parameters for the motor, determining the principles of motion and proposing an innovative technique to control the direction of motion, by controlling the phase between the two modes of vibrations. This enabled to create two directions of motion from a single vibration bar. A prototype of the proposed motor was fabricated and measured. This showed that operating parameters of the fabricated prototype are: frequency equal to 40.7 KHz, voltage: 50: 100 volt and current: 50: 100 m-amperes. This is showed a close agreement with FEA. Typical output of the prototype is no-load travelling speed of 28 mm/s, a resolution on the order of micrometers and a dynamic response <100 μsec. The motor is able to carry a load equal to 0.78 Newton. The developed motor has been used successfully in EDM industrial applications.


2013 ◽  
Vol 307 ◽  
pp. 42-52
Author(s):  
M. Shafik ◽  
Tim Wilmshurst ◽  
S. Fekkai

This paper presents a standing wave rotary piezoelectric ultrasonic using a single flexural vibration transducer. The motor consists of three main parts, stator, rotor and housing unit. The stator is a single piezoceramic flexural vibration transducer. The rotor is made up of the motor driving wheel and the shaft. A computer simulation and modelling using finite element analysis for the proposed motor is discussed and used in the motor design development process. Finite element analysis has been used to evaluate the motor structure by performing an algebraic solution of a set of equations, describing an ideal model structure, with a finite number of variables. The established simulation and modelling for ultrasonic motor using finite element analysis enabled to select, the material of the flexural transducer, defining the operating parameters for the motor, determining the principles of motion and proposing an innovative technique to control the direction of motion, by controlling the phase between the two modes of vibrations. This enabled to create two directions of motion from a single vibration bar. A prototype of the proposed motor was fabricated and its characteristics measured. This showed that operating parameters of the fabricated prototype are: frequency equal to 40.7 KHz, voltage: 50: 100 volt and current: 50: 100 m-amperes. This is showed a close agreement with FEA. Typical output of the prototype is no-load speed of 120 rpm, a resolution on the order of micrometers and a dynamic response <100 µsec. The motor is able to carry a load equal to 2.8 Newton.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012047
Author(s):  
Xiaozhu Wang ◽  
Jian Zhang

Abstract In this paper, a new rotating standing wave ultrasonic motor with multiple driving teeth is proposed. Using the method of adding additional teeth, the correction of the B06 surface of the ultrasonic motor vibrator is expected, the design of the optimum position of the drive tooth is realized. At the same time, a method of reducing the stiffness of the rotor is proposed, and the flexibility is met, the integrated design of the rotor and the pressure device can be realized by removing the disc spring. The accuracy of the finite element analysis is verified by the vibration test of the prototype oscillator. The finite element analysis of the main structure parameters of the influence oscillator mode and natural frequency is carried out. It provides theoretical basis for the design and machining of vibration.


2012 ◽  
Vol 548 ◽  
pp. 865-869 ◽  
Author(s):  
Shun Xin Zhang ◽  
Chao Dong Li

Ultrasonic linear motor, Piezoelectricity, Rectangular vibrator, Traveling wave Abstract. With the aim of realizing quasi-traveling wave drive in ultrasonic linear micro motors, a novel quasi-traveling wave ultrasonic linear motor using a ring type rectangular vibrator with the sizes of 39mm×6mm×12.7mm is proposed. The quasi-traveling wave is excited and propagates along the ring type rectangular vibrator depending on the superposition of two orthogonal flexural-vibration modes with a spatial phase shift of 90 degrees. 7 piezoelectric ceramic elements are used to excite two working modes of the vibrator. The vibrator structure was designed and eigenfrequency degeneration was realized by Finite Element Analysis (FEA) method. The modal test shows that the design scheme was tenable. The excitation and propagation of quasi-traveling wave were proved by laser vibration test. The trial motor gave a maximum driving velocity of 162.5mm/s and a maximum load of 8.5N, while the excitation frequency was 66 KHz and voltage was 160Vpp.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1468
Author(s):  
Luis Nagua ◽  
Carlos Relaño ◽  
Concepción A. Monje ◽  
Carlos Balaguer

A soft joint has been designed and modeled to perform as a robotic joint with 2 Degrees of Freedom (DOF) (inclination and orientation). The joint actuation is based on a Cable-Driven Parallel Mechanism (CDPM). To study its performance in more detail, a test platform has been developed using components that can be manufactured in a 3D printer using a flexible polymer. The mathematical model of the kinematics of the soft joint is developed, which includes a blocking mechanism and the morphology workspace. The model is validated using Finite Element Analysis (FEA) (CAD software). Experimental tests are performed to validate the inverse kinematic model and to show the potential use of the prototype in robotic platforms such as manipulators and humanoid robots.


Sign in / Sign up

Export Citation Format

Share Document