Dynamics Simulation Analysis of Centrifuge Facility-Vibration Shaker System Virtual Mocking Based on Flexible Centrifuge Arm

2013 ◽  
Vol 427-429 ◽  
pp. 266-270
Author(s):  
Yue Gang Wang ◽  
Zhao Yang Zuo ◽  
Jian Guo Wu ◽  
Hai Bo Li

In order to study the dynamic characteristics of centrifuge facility-vibration shaker system, In the establishment of centrifuge facility-vibration shaker system multi-body dynamic model based on virtual mocking technology, the virtual dynamic model of the entire centrifuge facility-vibration shaker system more close to reality is built up by the transmission of finite element of flexible centrifuge arm. This paper describes how to build the 3-D virtual prototype of centrifuge facility-vibration shaker system by using Pro/e and ADAMS software, and how to create the modal neutral file of the centrifuge arm by using ANSYS software. Considering the system as a rigid-flexible coupling system, the dynamical simulation is carried out, and the results are benefit for the further research of its kinetic behavior, dynamic and variable characteristics basis and the design of such system.

2013 ◽  
Vol 339 ◽  
pp. 425-429 ◽  
Author(s):  
Song Wang ◽  
Da Wei Liu ◽  
Wei Liu

In this paper, a detailed rigid-flexible coupling multi-body dynamic model of heavy vehicle was established using multi-body dynamics method, and B class road model was built using harmonic superposition method. Then, the platform of heavy vehicle dynamics simulation was established. The driver seat acceleration and tire dynamic load were simulated at different speeds under the input of different random road excitations. According to the ride comfort evaluation method provided by ISO2631-1, total weighted root-mean-square (RMS) acceleration evaluation method was used to evaluate the ride comfort of heavy vehicle at different ride speeds.


2014 ◽  
Vol 490-491 ◽  
pp. 858-862
Author(s):  
Tian Ze Shi ◽  
Deng Feng Wang ◽  
You Kun Zhang ◽  
Hong Liang Dong

A rigid-elastic coupling multi-body dynamic model of a car was established. The controllability and stability including constant cornering, steering returnability and steering effort performances are analyzed. Results show that there is still a feasibility to enhance the understeer. By optimizing the suspension parameters using DOE method, the characteristic of understeer was improved. Simulation analysis indicated that the characteristics of steering effort and steering returnability were not affected due to change of suspension parameters.


2021 ◽  
Vol 9 (11) ◽  
pp. 1221
Author(s):  
Weixin Zhang ◽  
Ye Li ◽  
Yulei Liao ◽  
Qi Jia ◽  
Kaiwen Pan

The wave-driven catamaran is a small surface vehicle driven by ocean waves. It consists of a hull and hydrofoils, and has a multi-body dynamic structure. The process of moving from static state to autonomous navigation driven by ocean waves is called “self-propulsion”, and reflects the ability of the wave-driven catamaran to absorb oceanic wave energy. Considering the importance of the design of the wave-driven catamaran, its self-propulsion performance should be comprehensively analysed. However, the wave-driven catamaran’s multi-body dynamic structure, unpredictable dynamic and kinematic responses driven by waves make it difficult to analyse its self-propulsion performance. In this paper, firstly, a multi-body dynamic model is established for wave-driven catamaran. Secondly, a two-phase numerical flow field containing water and air is established. Thirdly, a numerical simulation method for the self-propulsion process of the wave-driven catamaran is proposed by combining the multi-body dynamic model with a numerical flow field. Through numerical simulation, the hydrodynamic response, including the thrust of the hydrofoils, the resistance of the hull and the sailing velocity of the wave-driven catamaran are identified and comprehensively analysed. Lastly, the accuracy of the numerical simulation results is verified through a self-propulsion test in a towing tank. In contrast with previous research, this method combines multi-body dynamics with computational fluid dynamics (CFD) to avoid errors caused by artificially setting the motion mode of the catamaran, and calculates the real velocity of the catamaran.


2014 ◽  
Vol 940 ◽  
pp. 132-135 ◽  
Author(s):  
Yi Fan Zhao ◽  
Ling Sha ◽  
Yi Zhu

Established the dynamics simulation analysis model of crane hoisting mechanism based on the theory of dynamics in Adams software, and then through the three dimensional model of lifting mechanism dynamics entities, the constraints, load, drive can be added, the motion law can be defined to simulation analysis the change of the force of wire rope, the change of displacement, velocity and acceleration of lifting weight in the lifting process. On the basis of the simulation results, it can make a great improvement for the structure of crane and provide a meaningful theoretical reference for the hoisting machinery innovation design.


2019 ◽  
Vol 287 ◽  
pp. 03005
Author(s):  
Jan Furch ◽  
Cao Vu Tran

The combat vehicle gearbox, during the operation, generates vibration signals being related to the technical condition of gearbox. The analysis of the vibration signal could be used to determine accurately the behaviour of gearbox. Along with the development of the computer technology, the multi-body dynamic solution has been used widely to simulate, analyse, and determine the technical condition of gearbox. The purpose of this paper is to introduce the dynamic model of combat vehicle gearbox, and the simulation process based on the multi-body dynamic software, namely MSC.ADAMS. This proposed model allows the detection of failure conditions of individual gears and bearings in the gearbox. In this way, the fault conditions of the individual transmission components are identified. In the future, we would like to include a material wear module in the model, and we would like to model the life of the gearbox. We assume that we would also carry out accelerated tests of the gearbox to verify validity.


2013 ◽  
Vol 328 ◽  
pp. 589-593
Author(s):  
Li Hua Wang ◽  
An Ning Huang ◽  
Guang Wei Liu

There are higher requirements on running stability of the rail vehicle with the incensement of the running speed. The running stability is one of the important indicators of evaluating the dynamic performance of the rail vehicle. In this paper, the whole multi-body dynamic model of the rail vehicle was proposed based on the theory of multi-body dynamics in the software of Simpack. And the lateral and vertical vibrate accelerations of the rail vehicle were simulated when it was inspired by the track irregularities. Then the running stabilities of the rail vehicle were estimated accurately. This will propose basis on the improving design and optimization design of the whole rail vehicle.


2014 ◽  
Vol 889-890 ◽  
pp. 48-51
Author(s):  
Wei Chen ◽  
Qing Xuan Jia ◽  
Han Xu Sun ◽  
Si Cheng Nian

The virtual prototype model is established for the induction station system of the parcel sorting machine. The key problems of the belt modeling and the constraint between belt and bearing are solved. The dynamical simulation analysis of the induction station system is carried out using ADAMS software. Based on the position and velocity changes of the contact point between belt and the parcel, the dynamic performances for the induction station system are gained. This research saves the development costs and time, and provides theoretical basis for working parameter design of the induction station system.


Sign in / Sign up

Export Citation Format

Share Document