A Study of the Simulation of a Light Trapping Module for Increasing the Absorption Efficiency of Solar Cells

2013 ◽  
Vol 437 ◽  
pp. 198-201
Author(s):  
Wang Lin Liu ◽  
Guan Yu Lin ◽  
Hsiharng Yang

This study proposed a light trapping module to improve the light path in a solar cell in order to increase its light absorption efficiency. The microlens on a transparent substrate concentrates incident light into several light beams, which it leads into the optical channel on the back side. The optical channel is designed by coating highly reflective metals on the same transparent substrate, then an optical channel opening is made at the light beam focus so the light beams can pass through the optical channel and irradiate the solar cell. The light reflected by the solar cell is reflected again by the metal surface to the upper film of the solar cell, thus, increasing the absorption efficiency of the solar cell and reducing the film thickness of the solar cell to obtain better electrical properties. In this simulation the refractive index of the microlens was set as 1.43, the optical channel was 25 μm and the spacing was 0.27 mm, thus, the simulated absorption efficiency reached over 80%. The feasibility of this study was thus proved.

2014 ◽  
Vol 953-954 ◽  
pp. 43-46
Author(s):  
Li Li Yu ◽  
Li Xia Yang

The studied results found it can not only reduce the thickness of the solar cell but also improve the light absorbed efficiency by using grating as light trapping structure. In this paper, a dual grating periodic structure is designed to improve light absorption efficiency over the spectrum range 330-1400 nm. Then the relationship between groove-depth of dual grating and absorption efficiency is investigated by using finite difference time domain method (FDTD) combining with periodic boundary conditions (PBC).


2020 ◽  
Vol 49 (4) ◽  
pp. 523-532
Author(s):  
Abu S. M. Mohsin ◽  
Monica Mobashera ◽  
Afrida Malik ◽  
Maisha Rubaiat ◽  
Maliha Islam

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2460
Author(s):  
Jian Zou ◽  
Mengnan Liu ◽  
Shuyu Tan ◽  
Zhijie Bi ◽  
Yong Wan ◽  
...  

A two-dimensional perovskite photonic crystal structure of Methylamine lead iodide (CH3NH3PbI3, MAPbI3) is rationally designed as the absorption layer for solar cells. The photonic crystal (PC) structure possesses the distinct “slow light” and band gap effect, leading to the increased absorption efficiency of the absorption layer, and thus the increased photoelectric conversion efficiency of the battery. Simulation results indicate that the best absorption efficiency can be achieved when the scattering element of indium arsenide (InAs) cylinder is arranged in the absorption layer in the form of tetragonal lattice with the height of 0.6 μm, the diameter of 0.24 μm, and the lattice constant of 0.4 μm. In the wide wavelength range of 400–1200 nm, the absorption efficiency can be reached up to 82.5%, which is 70.1% higher than that of the absorption layer without the photonic crystal structure. In addition, the absorption layer with photonic crystal structure has good adaptability to the incident light angle, presenting the stable absorption efficiency of 80% in the wide incident range of 0–80°. The results demonstrate that the absorption layer with photonic crystal structure can realize the wide spectrum, wide angle, and high absorption of incident light, resulting in the increased utilization efficiency of solar energy.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 267
Author(s):  
Minyu Bai ◽  
Zhuoman Wang ◽  
Jijie Zhao ◽  
Shuai Wen ◽  
Peiru Zhang ◽  
...  

Weak absorption remains a vital factor that limits the application of two-dimensional (2D) materials due to the atomic thickness of those materials. In this work, a direct chemical vapor deposition (CVD) process was applied to achieve 2D MoS2 encapsulation onto the silicon nanopillar array substrate (NPAS). Single-layer 2D MoS2 monocrystal sheets were obtained, and the percentage of the encapsulated surface of NPAS was up to 80%. The reflection and transmittance of incident light of our 2D MoS2-encapsulated silicon substrate within visible to shortwave infrared were significantly reduced compared with the counterpart planar silicon substrate, leading to effective light trapping in NPAS. The proposed method provides a method of conformal deposition upon NPAS that combines the advantages of both 2D MoS2 and its substrate. Furthermore, the method is feasible and low-cost, providing a promising process for high-performance optoelectronic device development.


2013 ◽  
Vol 5 (16) ◽  
pp. 8225-8230 ◽  
Author(s):  
John R. Tumbleston ◽  
Abay Gadisa ◽  
Yingchi Liu ◽  
Brian A. Collins ◽  
Edward T. Samulski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document