Study on Numerical Simulation of Iced Conductor Galloping for Multi-Span Power Transmission Lines

2010 ◽  
Vol 44-47 ◽  
pp. 2671-2675
Author(s):  
Li Li ◽  
Zhi Yuan Cheng ◽  
Zi Dong Hu

The general expression of Lagrange nonlinear cable element is established firstly by using virtual work principle. On the basis of the theory, the specific expression of a two-node cable element having rotational degree of freedom is derived and the non-linear finite element model of multi-span transmission line for galloping analysis was established. In addition, the aerodynamic coefficient of iced conductor under different wind attack angle was obtained through computational fluid dynamics method. Based on the finite element model and aerodynamic characteristics of the iced conductor, the Runge-Kutta method was applied to carried out non-linear numerical simulation of iced conductor galloping and the Matlab program was compiled. The galloping of the multi-span transmission line crossing Hanjiang River was analyzed. The results indicate that the presented method can simulate the galloping process effectively and it can provide the basic references for further research of preventing galloping.

2012 ◽  
Vol 182-183 ◽  
pp. 1630-1633
Author(s):  
Hao Jun Hu ◽  
Yuan Han Wang ◽  
Zi Dong Hu

Based on the second development at the ANSYS computing platform, finite element model of a Tower-Line Coupling system was established. The computational fluid dynamics module (CFX) was used for the numerical simulation of the aerodynamic characteristics of iced conductor. On the basis of the Kaimal spectrum, fast Fourier transform was introduced to prepare the wind speed simulation program WVFS with spatial correlation into consideration, thus generating aerodynamic coefficients of iced conductor at different wind attack angles as well as wind speed time series at tower-line nodes. According to the finite element model of continuous multi-conductors and the aerodynamic force- wind attack angle curve, the explicit integration is applied for numerical solution of galloping of iced conductor.


2021 ◽  
Vol 18 ◽  
pp. 175682932110433
Author(s):  
Shanyong Zhao ◽  
Zhen Liu ◽  
Ke Lu ◽  
Dacheng Su ◽  
Shangjing Wu

In this paper, the bionic membrane structure is introduced to improve the aerodynamic performance of nano rotor at the low Reynolds number. The aerodynamic characteristics of nano rotor made of hyperelastic material as membrane blades are studied. Firstly, based on the hyperelastic constitutive model, a finite element model of the rotor is established and compared with the results of the modal test to verify the accuracy of the model. Then the computational fluid dynamics model of membrane nano rotor is established which combined with the finite element model. The aerodynamic characteristics of the membrane rotor under hovering conditions are studied using fluid–structure interaction method. It is found that the calculation results matched well with the experiment results. The design of the structural parameters such as the membrane proportion, shape, and position of the membrane rotor is optimized. The influence of each parameter on the aerodynamic performance of the rotor is obtained. Under certain structural conditions, the performance can be effectively improved, which provides a new idea for the design of the nano rotor.


2012 ◽  
Vol 04 (01) ◽  
pp. 1250010 ◽  
Author(s):  
V. P. VALLALA ◽  
G. S. PAYETTE ◽  
J. N. REDDY

In this paper, a finite element model for efficient nonlinear analysis of the mechanical response of viscoelastic beams is presented. The principle of virtual work is utilized in conjunction with the third-order beam theory to develop displacement-based, weak-form Galerkin finite element model for both quasi-static and fully-transient analysis. The displacement field is assumed such that the third-order beam theory admits C0 Lagrange interpolation of all dependent variables and the constitutive equation can be that of an isotropic material. Also, higher-order interpolation functions of spectral/hp type are employed to efficiently eliminate numerical locking. The mechanical properties are considered to be linear viscoelastic while the beam may undergo von Kármán nonlinear geometric deformations. The constitutive equations are modeled using Prony exponential series with general n-parameter Kelvin chain as its mechanical analogy for quasi-static cases and a simple two-element Maxwell model for dynamic cases. The fully discretized finite element equations are obtained by approximating the convolution integrals from the viscous part of the constitutive relations using a trapezoidal rule. A two-point recurrence scheme is developed that uses the approximation of relaxation moduli with Prony series. This necessitates the data storage for only the last time step and not for the entire deformation history.


Sign in / Sign up

Export Citation Format

Share Document