150-212μm Dust Particles on the Reliability of Electrical Contact in Static Conditions

2013 ◽  
Vol 442 ◽  
pp. 17-21
Author(s):  
Quan Yin ◽  
Sheng Chun Liu ◽  
Liang Jun Xu

Dust particles from the air in the electrical contact caused more and more problems. To a large extent reduce the reliability of the system. In order to study the impact of these issues, we need to analyze and discuss the dust particles on contact performance of electrical contact materials. In this paper, under static conditions with 150-212μm of the silica particles analyzed and discussed, represented by the pressure difference, particle size, being suppressed will lead to a different location of the static contact resistance and analysis of particle size of the scope of what the content of easily crushed. Experimental results show that the particle size and the location of the different particles are pressed, will make a change in contact resistance, another analysis gives easily be crushed particle size range is 150-300μm.

2013 ◽  
Vol 442 ◽  
pp. 13-16
Author(s):  
Quan Yin ◽  
Sheng Chun Liu ◽  
Liang Jun Xu

Dust particles from the air in the electrical contact caused more and more problems. To a large extent reduce the reliability of the system. In order to study the impact of these issues, we need to analyze and discuss the dust particles on contact performance of electrical contact materials. In this paper, under static conditions with 70-150μm of the silica particles analyzed and discussed, represented by the pressure difference, particle size, being suppressed will lead to a different location of the static contact resistance and analysis of particle size of the scope of what the content of easily crushed. Experimental results show that the particle size and the location of the different particles are pressed, will make a change in contact resistance.


2014 ◽  
Vol 936 ◽  
pp. 459-463 ◽  
Author(s):  
Zhi Jie Lin ◽  
Xu Dong Sun ◽  
Shao Hong Liu ◽  
Jia Lin Chen ◽  
Ming Xie ◽  
...  

Performances of Ag-SnO2 electrical contact materials can be strongly affected by the microstructure. In this work, Ag-SnO2 composite powders were synthesized by chemical reductive precipitation method. During the precipitation process, Ag particle was deposited onto the surface of SnO2 particle with the assistance of citric acid. The microstructure and properties were analyzed for the prepared Ag-SnO2 electrical contact materials. Our research reveals that the particle size of SnO2 has significant influence on the morphology of the Ag-SnO2 composite powders, and therefore on the microstructure and physical properties of the electrical contact materials. With the decrease of particle size of SnO2, hardness of the Ag-SnO2 electrical contact materials increases, while electrical conductivity decreases.


2021 ◽  
Vol 11 (15) ◽  
pp. 6874
Author(s):  
Miroslava Vandličkova ◽  
Iveta Markova ◽  
Katarina Holla ◽  
Stanislava Gašpercová

The paper deals with the selected characteristics, such as moisture, average bulk density, and fraction size, of tropical marblewood dust (Marmaroxylon racemosum) that influence its ignition risk. Research was focused on sieve analysis, granulometric analysis, measurement of moisture level in the dust, and determination of the minimum ignition temperatures of airborne tropical dust and dust layers. Samples were prepared using a Makita 9556CR 1400W grinder and K36 sandpaper for the purpose of selecting the percentages of the various fractions (<63, 63, 71, 100, 200, 315, 500 μm). The samples were sized on an automatic vibratory sieve machine Retsch AS 200. More than 65% of the particles were determined to be under 100 μm. The focus was on microfractions of tropical wood dust (particles with a diameter of ≤100 µm) and on the impact assessment of particle size (particle size <100 µm) on the minimum ignition temperatures of airborne tropical dust and dust layers. The minimum ignition temperature of airborne marblewood dust decreased with the particle size to the level of 400 °C (particle size 63 μm).


2017 ◽  
Vol 114 ◽  
pp. 139-148 ◽  
Author(s):  
Hangyu Li ◽  
Xianhui Wang ◽  
Xiuhua Guo ◽  
Xiaohong Yang ◽  
Shuhua Liang

2018 ◽  
Vol 6 (1) ◽  
pp. 016558 ◽  
Author(s):  
Wang Haitao ◽  
Zhang Mei ◽  
Yang Menglin ◽  
Wang Jingqin ◽  
Zhu Yancai

Sign in / Sign up

Export Citation Format

Share Document