ag particle
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 2)

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1573
Author(s):  
Xiaoqing Si ◽  
Xiaoyang Wang ◽  
Chun Li ◽  
Tong Lin ◽  
Junlei Qi ◽  
...  

Reactive air brazing has been widely used in fabricating solid oxide fuel/electrolysis cell (SOFC/SOEC) stacks. However, the conventional Ag–CuO braze can lead to (I) over oxidation at the steel interconnect interface caused by its adverse reactions with the CuO and (II) many voids caused by the hydrogen-induced decomposition of CuO. The present work demonstrates that the Ag particle interlayer can be used to join yttria-stabilized zirconia (YSZ) electrolytes to AISI 441 interconnect in air instead of Ag–CuO braze. Reliable joining between YSZ and AISI 441 can be realized at 920 °C. A dense and thin oxide layer (~2 μm) is formed at the AISI 441 interface. Additionally, an interatomic joining at the YSZ/Ag interface was observed by TEM. Obtained joints displayed a shear strength of ~86.1 MPa, 161% higher than that of the joints brazed by Ag–CuO braze (~33 MPa). After aging in reducing and oxidizing atmospheres (800 °C/300 h), joints remained tight and dense, indicating a better aging performance. This technique eliminates the CuO-induced issues, which may extend lifetimes for SOFC/SOEC stacks and other ceramic/metal joining applications.


Mining ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 335-350
Author(s):  
Andrea E. Jiménez-Paredes ◽  
Elvia F. Alfaro-Saldaña ◽  
Araceli Hernández-Sánchez ◽  
J. Viridiana García-Meza

Pyrite bio-oxidation by chemolithotrophic acidophile bacteria has been applied in the mining industry to bioleach metals or to remove pyritic sulfur from coal. In this process, it is desirable to use autochthonous and already adapted bacteria isolated directly from the mining sites where biomining will be applied. Bacteria present in the remnant solution from a mining company were identified through cloning techniques. For that purpose, we extracted total RNA and performed reverse transcription using a novel pair of primers designed from a small region of the 16S gene (V1–V3) that contains the greatest intraspecies diversity. After cloning, a high proportion of individuals of the strains ATCC-23270 (NR_074193.1 and NR_041888.1) and DQ321746.1 of the well-known species Acidithiobacillus ferrooxidans were found, as well as two new wild strains of A. ferrooxidans. This result showed that the acidic remnant solution comprises a metapopulation. We assayed these strains to produce bioferric flocculant to enhance the subsequent pyrite bio-oxidation, applying two-stage chemical–bacterial oxidation. It was shown that the strains were already adapted to a high concentration of endogenous Fe2+ (up to 20 g·L−1), increasing the volumetric productivity of the bioferric flocculant. Thus, no preadaptation of the community was required. We detected Au and Ag particles originally occluded in the old pyritic flotation tailings assayed, but the extraction of Au and Ag by cyanidation resulted in ca. 30.5% Au and 57.9% Ag.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3822
Author(s):  
Muhammad Faiz Aizamddin ◽  
Mohd Muzamir Mahat ◽  
Zaidah Zainal Zainal Ariffin ◽  
Irwan Samsudin ◽  
Muhammad Syafiek Mohd Razali ◽  
...  

Silver (Ag) particles have sparked considerable interest in industry and academia, particularly for health and medical applications. Here, we present the “green” and simple synthesis of an Ag particle-based silicone (Si) thin film for medical device applications. Drop-casting and peel-off techniques were used to create an Si thin film containing 10–50% (v/v) of Ag particles. Electro impedance spectroscopy (EIS), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and tensile tests were used to demonstrate the electrical conductivity, crystallinity, morphology-elemental, and mechanical properties, respectively. The oriented crystalline structure and excellent electronic migration explained the highest conductivity value (1.40 × 10−5 S cm−1) of the 50% Ag–Si thin film. The findings regarding the evolution of the conductive network were supported by the diameter and distribution of Ag particles in the Si film. However, the larger size of the Ag particles in the Si film resulted in a lower tensile stress of 68.23% and an elongation rate of 68.25% compared to the pristine Si film. The antibacterial activity of the Ag–Si film against methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus (B. cereus), Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa) was investigated. These findings support Si–Ag thin films’ ability to avoid infection in any medical device application.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yi Li ◽  
Jian Zhou ◽  
Runjie Li ◽  
Qingyu Zhang

Zener pinning between a curved Cu grain boundary (GB) and a differently shaped and oriented Ag particle has been simulated via molecular dynamics. The computed magnitudes of the maximum pinning force agreed with theoretical predictions only when the force was small. As the force increased, discrepancy became obvious. Through careful inspection of the structures of the Cu–Ag interfaces, detailed interaction processes, and variation of the Cu GB during the interaction, the discrepancy is found to correlate with GB faceting, which very likely reduces the maximum pinning force and facilitates boundary passage. GB anisotropy and/or interface characteristics are also found to slightly contribute to the discrepancy. These findings suggest that the assumption of an isotropic GB with constant energy utilized in previous theoretical studies for deriving the maximum pinning force might be inappropriate and that an accurate maximum pinning force could not be predicted without knowing the effects of GB evolution together with detailed properties of both GBs and interfaces.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khushboo Bhanderi ◽  
Prasanna S. Ghalsasi ◽  
Katsuya Inoue

AbstractIs it possible to ‘explore’ metal’s intrinsic property—a cohesive interaction—which naturally transform M0 into an aggregate or a particle or film for driving oxidative C–C bond formation? With this intention, reduction of [Ag(NH3)2]+ to Ag0 with concurrent oxidation of different phenols/naphthols to biphenyls was undertaken. The work is originated during careful observation of an undergraduate experiment—Tollens’ test—where silver mirror film deposition takes place on the walls of borosilicate glass test tube. When the same reaction was carried out in polypropylene (plastic-Eppendorf) tube, we observed aggregation of Ag0 leading to floating Ag-particles but not silver film deposition. This prompted us to carry out challenging cross-coupling reaction by ONLY changing the surface of the reaction flask from glass to plastic to silicones. To our surprise, we observed good selective oxidative homo-coupling on Teflon surface while cross-coupling in Eppendorf vial. Thus, we propose that the formation of biphenyl is driven by the macroscopic growth of Ag0 into [Ag-particle] orchestrated by Ag…Ag cohesive interaction. To validate results, experiments were also performed on gram scale. More importantly, oxidation of β-naphthol carried out in quartz (chiral) tube which yielded slight enantioselective excess of BINOL. Details are discussed.


Author(s):  
Kazumasa Murata ◽  
Junya Ohyama ◽  
Atsushi Satsuma

In the present study, the redispersion behavior of Ag particles on ZSM-5 in the presence of coke was observed using in situ X-ray absorption fine structure (XAFS) spectroscopy.


2020 ◽  
Author(s):  
Tina Nenoff ◽  
Jessica Rimsza ◽  
Karena Chapman

2020 ◽  
Vol 10 (4) ◽  
pp. 1338
Author(s):  
Han Dai ◽  
Xinxiang Yu ◽  
Zhiguo Zhao ◽  
Dandan Shi ◽  
Xianli Shi ◽  
...  

Highly ordered Ag particle-chains (AgPCs) have been obtained from Ag nanowires (AgNWs) by radio frequency (RF) plasma treatment. Such conversion is attributed to the fast nonequilibrium diffusion of Ag atoms (liquid-like behavior) on AgNWs surfaces through the plasma bombarding. Further, the formed AgPCs highly coincide with the predictions by Rayleigh instability. In contrast to heat treatment, AgPCs are formed rapidly, highly ordered and at temperature below 100 °C. Furthermore, aperiodicity and wire–wire welding instead of highly ordered particle-chains has been observed as the AgNWs are overlapped by plasma treatment. This work should provide a new perspective for metallic particle-chains fabrication.


Sign in / Sign up

Export Citation Format

Share Document