A 3D Numerical Model for Free Interfacial Flows and Applications to Offshore Waves with Submerged Obstacles

2013 ◽  
Vol 444-445 ◽  
pp. 544-548
Author(s):  
Bin Xie ◽  
Feng Xiao

A 3D numerical model for incompressible multi-fluid flows has been developed by using a multi-moment finite volume method and an accurate and efficient VOF type scheme for capturing moving interfaces of multi-fluids. The numerical model is validated with the theoretical and experimental results of the benchmark tests of solitary wave and dam break flow, which indicates the adequate numerical accuracy of the model as a practical tool to assess and predict offshore waves and their impacts on coastal structures. Numerical experiments have been systematically conducted to investigate wave breaking phenomena and the impacts on seawalls.

2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Mingliang Zhang ◽  
Yuanyuan Xu ◽  
Jin Li ◽  
Huiting Qiao ◽  
Hongxing Zhang

This study models a dam-break flow over a bed by using a depth-averaged numerical model based on finite-volume method and computes the dam-break flow and bed morphology characteristics. The generalized shallow water equations considering the sediment transport and bed change on dam-break flow are adopted in the numerical model, and the vegetation effects on the flow and morphological changes are considered. The model is verified against three cases from the laboratory and field data documented in the literature. The numerical results are consistent with the measured results, which show that the model could accurately simulate the evolution of the dam-break flows and the morphology evolution of bed within a computational domain with complex plant distribution. The results show that the riparian vegetation in the waterway narrows the channel and reduces the conveyance capacity of river. The flood flow is diverted away from the vegetation community toward two sides and forms a weak flow region behind the vegetation domain. The resistance of plants markedly reduces the flow velocity, which directly alters the fluvial processes and influences the waterway morphology.


2009 ◽  
Vol 12 (18) ◽  
pp. 5-11
Author(s):  
Giang Song Le ◽  
Hung Manh Le

The paper presented a 3D numerical model for calculation of flow and sediment transport in channels. The flow is calculated by solving the Reynolds equation with hydrostatic assumption. Suspended-load is simulated by transport equation while bed-load is calculated using empirical formula. Bed transformation is obtained by solving an overall mass-balance equation. All equations are solved using finite volume method. The model is applied for study of bed deformation of VamNao river in the Mekong delta.


2001 ◽  
Vol 29 (1) ◽  
pp. 2-22 ◽  
Author(s):  
T. Okano ◽  
M. Koishi

Abstract “Hydroplaning characteristics” is one of the key functions for safe driving on wet roads. Since hydroplaning depends on vehicle velocity as well as the tire construction and tread pattern, a predictive simulation tool, which reflects all these effects, is required for effective and precise tire development. A numerical analysis procedure predicting the onset of hydroplaning of a tire, including the effect of vehicle velocity, is proposed in this paper. A commercial explicit-type FEM (finite element method)/FVM (finite volume method) package is used to solve the coupled problems of tire deformation and flow of the surrounding fluid. Tire deformations and fluid flows are solved, using FEM and FVM, respectively. To simulate transient phenomena effectively, vehicle-body-fixed reference-frame is used in the analysis. The proposed analysis can accommodate 1) complex geometry of the tread pattern and 2) rotational effect of tires, which are both important functions of hydroplaning simulation, and also 3) velocity dependency. In the present study, water is assumed to be compressible and also a laminar flow, indeed the fluid viscosity, is not included. To verify the effectiveness of the method, predicted hydroplaning velocities for four different simplified tread patterns are compared with experimental results measured at the proving ground. It is concluded that the proposed numerical method is effective for hydroplaning simulation. Numerical examples are also presented in which the present simulation methods are applied to newly developed prototype tires.


2021 ◽  
Vol 36 (3) ◽  
pp. 165-176
Author(s):  
Kirill Nikitin ◽  
Yuri Vassilevski ◽  
Ruslan Yanbarisov

Abstract This work presents a new approach to modelling of free surface non-Newtonian (viscoplastic or viscoelastic) fluid flows on dynamically adapted octree grids. The numerical model is based on the implicit formulation and the staggered location of governing variables. We verify our model by comparing simulations with experimental and numerical results known from the literature.


2021 ◽  
Vol 42 ◽  
pp. 128-134
Author(s):  
Daniela Pintilie ◽  
Iuliana Florina Pană ◽  
Adrian Malciu ◽  
Constantin Puică ◽  
Cristina Pupăză

High Explosive Mortar bombs are used on the battlefield for destroying the manpower, non-armoured equipment and shelters. The paper describes an original experimental and numerical approach regarding the potential threats caused by the detonation of 120 mm HE mortar bombs. The evaluation of the bomb effect presumes the fulfillment of experimental trials that focus on two physical mechanisms which appear after the detonation of the cased high explosive. These mechanisms are the shock wave generation and the fragments propulsion, which were also studied by a numerical model that provides results over the bomb fragmentation mode. The novelty of the paper consists in the calibrated 3D numerical model confirmed by the experimental data, which provides information over the fragmentation process of the case and the initial velocity of its fragments, proving that the main threat of this type of ammunition is the effect through metal fragments. The results of numerical simulation and experimental data are used for their comparative analysis and the assessment of the phenomena.


Sign in / Sign up

Export Citation Format

Share Document