Load Bearing Capacity Investigation and Coating Failure Mechanism for Coated Spur Gears

2013 ◽  
Vol 446-447 ◽  
pp. 491-496
Author(s):  
Ji Ling Feng ◽  
Yi Qin

Spur gears are the most common type of gears for industry, due to its simple structures and low costs of manufacture. Under the complex loading conditions, failures can easily occur in the form of de-bonding, pitting, spalling or crushing of coating structures. Failure may originate from initiation of cracks, and its growth and propagation, however, basic failure mechanism is still not clear. In order to investigate the failure mechanism of coating structure failure for the spur gears, this paper presents some understandings about the coating damage at the teeth flank of a spur gear, based on a novel Finite Element simulation-procedures. This modeling procedure was developed based on several modeling approaches including: parameterized FE modeling, Cohesive-Zone Model and sub-modeling technique. The numerical model of spur gear was based on 42CrMo4 steel with PVD coating deposited as TiN/CrN multilayer structures. It was found that greater load bearing capacity exist for spur gears with the coating of nitride states deposited on 42CrMo4 steel.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heyuan Huang ◽  
Xuanjia Zhang ◽  
Zhicheng Dong ◽  
Dong Wang

AbstractWith the continuous improvement of the mechanical properties of composite materials, the adhesive interface performance of composite T-stiffened panels has become a critical factor in determining the overall structural strength. However, little work has been reported on the mechanical properties of adhesive interfaces in composite T-stiffened panels under lateral bending and shear loading. Especially, there is no clear explanation on the damage evolution law of structural properties for the interface with defects, which greatly influenced the use of T-stiffened composite structures. In this paper, the mechanical properties of T1100/5405 composite T-stiffened laminates under lateral bending and shear loading are experimentally and numerically investigated. The load-bearing capacities for the panels with intact and defected adhesive interfaces are compared, the damage evolution law of typical T-stiffened structures is further explored. Based on the continuum damage model (CDM) and the cohesive zone model (CZM), the constitutive models of the adhesive layer and the composite material are established respectively. Good agreements between experimental and numerical profiles illustrate that damages mainly occur on the loading side and the corner of the L-type ribs under lateral bending conditions, while damages extend from both sides of the interface layer to the center under shear loading. When a prefabricated defect exists, damages extend from the defect location along the loading direction. At the same time, the analysis shows that the lay-up of the surface layer, the chamfer radius, and the width of T-type ribs have a great influence on the structural load-bearing capacity, but less on the damage evolution form.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaofu Li ◽  
Chuanpeng Ji ◽  
Zhi Zhang ◽  
Shiwei Zhang ◽  
Hongqin Liu ◽  
...  

Adhesively bonded joint has gained increasing popularity due to weight reduction and relief of stress concentration. However, damage in the mode of adhesive failure and cohesive failure, as well as the adherend failure, could still occur, and it has been realized that the reliability of the adhesively bonded joint depends on numerous complex and even nonlinearly interacting factors. Consequently, the prediction of load-bearing capacity and damage localization for an adhesively bonded joint can be difficult due to the not well-known effects of the variations or uncertainties in the imperfected adhesive-adherent bonding surfaces or the environmental conditions as well as the material and geometrical nonlinearities. Although abundant uncertainties are present, the standard analysis tool in industries is still deterministic finite element analysis (FEA). The routine practice of such analysis is applying a cohesive zone model (CZM) implemented with a proper traction-separation law to predict the onset and gradual degradation of adhesion which may underpredict or overpredict the load-bearing capacity of an adhesively bonded joint. In this study, deterministic FEA with a CZM is first applied to predict the load-displacement curve of an adhesively bonded polyurethane-to-steel double butt joint. A comparison of the prediction with the experiment reveals the inability of a deterministic approach for accurately predicting the load-bearing capability of the joint and the failure propagation route. Then, uncertainty analysis using polynomial chaos expansion (PCE) is applied to examine if it can enhance the prediction of the joint failure. The results show the predictions generated by the uncertainty analysis correlate better than the deterministic analysis with the test data, hence demonstrating the potential of uncertainty analysis in improving the prediction of the failure mode and load-bearing capability of an adhesively bonded polyurethane-to-steel double butt joint.


2017 ◽  
Vol 747 ◽  
pp. 518-524
Author(s):  
Angelo Di Tommaso ◽  
Susanna Casacci ◽  
Cristina Gentilini

In this study the results of an experimental campaign that involves masonry specimens subjected to a purposely designed splitting test are presented. The specimens are reinforced in the mortar joints by means of carbon bundles impregnated with a water based resin. Unreinforced specimens are also tested for comparison purposes. Some specimens are characterized by an initial crack obtained artificially by cutting the bricks to highlight the crack arrestor function of the carbon bundles. Results show that the failure mechanism from brittle becomes ductile and a load bearing capacity increment is registered in reinforced specimens.


2013 ◽  
Vol 12 (2) ◽  
pp. 221-228
Author(s):  
Zbigniew Kowal ◽  
Rafał Piotrowski

The paper presents the results of developing a concept of economical energy-active expansion segments for large-volume halls, in which: 1) structural coverings were used, 2) thermal impacts on forces and displacements were reduced to conventional values stated in the code [1], 3) load bearing capacity and reliability, greater than those recommended for RC2 class structures, were maintained [2], 4) the static scheme was selected in such a way so that failure-causing thermal impacts would not affect the reliability of the hall expansion segments. The effect was obtained by detaching the beam kinematically admissible failure mechanism from the tilt kinematically admissible failure mechanism of separate energy-active expansion segments of the hall.


2014 ◽  
Vol 923 ◽  
pp. 93-96 ◽  
Author(s):  
Jiří Witzany ◽  
Radek Zigler

The experimental research of failure mechanism of stone columns made of coursed masonry of regular sandstone blocks and coursed masonry of irregular (freestone) blocks under concentric compression and the research of the performance of non-reinforced as well as CFRP-reinforced stone columns completed to-date pointed out the necessity of a different approach to the assessment of the load-bearing capacity, or residual load-bearing capacity, of masonry composed of stone blocks.


Sign in / Sign up

Export Citation Format

Share Document