Assessment and Prediction of Joint Toxicity of Aniline Derivatives

2013 ◽  
Vol 448-453 ◽  
pp. 217-220
Author(s):  
Hui Lin Ge ◽  
Shu Shen Liu ◽  
Hong Qiu Yuan ◽  
Gui Hao Yin ◽  
Yi Xie ◽  
...  

The joint toxicity of aniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline on photobacterium were predicted and evaluated by using concentration addition (CA) and independent action (IA) models, and joint effect indices including toxic units, additive index, mixture toxicity index, and similarity parameter. The tested mixture presented synergism.

2014 ◽  
Vol 9 (5) ◽  
pp. 550-558 ◽  
Author(s):  
Chuan-Wang Cao ◽  
Fang Niu ◽  
Xiao-Peng Li ◽  
Shi-Lin Ge ◽  
Zhi-Ying Wang

AbstractThis study investigated the toxic effects of 12 substituted benzenes exposed to Propsilocerus akamusi larvae singly and as mixtures. Their toxicities were quantified in terms of median effective concentration (EC50) killing 50% of the larvae. For individual substituted benzenes to 4th-instar P. akamusi larvae, the toxicity was in decreasing order of p-chlorophenol > nitrobenzene > phenol > 1,2-dimethylbenzene > 1,3-dimethylbenzene > chlorobenzene > p-phenylenediamine > 1,4-dimethylbenzene > m-phenylenediamine > methylbenzene > benzene > aniline. The order of toxicity among three isomers of dimethylbenzene was 1,2-dimethylbenzene > 1,3-dimethylbenzene > 1,4-dimethylbenzene while p-phenylenediamine > m-phenylenediamine. The binary substituted benzene compounds’ toxicities were evaluated by toxic unit (TU), additive index (AI), mixture toxicity index (MTI) and similarity parameter index (λ). The evaluation results of TU and MTI for 9 substituted benzene compounds were completely consistent while the results of AI were the same as the results of λ based on 24 h EC50 of binary substituted benzenes. The evaluation results of 10 substituted benzene compounds were consistent using TU, MTI, AI and λ evaluation methods. 52.63% and 47.37% of binary substituted benzene tests on P. akamusi larvae showed synergism and partial addition/antagonism, respectively, under mixtures of equal proportions. These results suggest that substituted benzenes indicate acute and binary joint toxicity to P. akamusi.


Author(s):  
Thomas Backhaus

Analytical monitoring surveys routinely confirm that organisms in the environment are exposed to complex multi-component pharmaceutical mixtures. We are hence tasked with the challenge to take this into consideration when investigating the ecotoxicology of pharmaceuticals. This review first provides a brief overview of the fundamental approaches for mixture toxicity assessment, which is then followed by a critical review on the empirical evidence that is currently at hand on the ecotoxicology of pharmaceutical mixtures. It is concluded that, while the classical concepts of Concentration Addition and Independent Action (Response Addition) provide a robust scientific footing, several knowledge gaps remain. This includes in particular the need for more and better empirical data on the effects of pharmaceutical mixtures on soil organisms as well as marine flora and fauna, and exploring the quantitative consequences of toxicokinetic, toxicodynamic and ecological interactions. Increased focus should be put on investigating the ecotoxicology of pharmaceutical mixtures in environmentally realistic settings.


2021 ◽  
Author(s):  
Rully Adi Nugroho ◽  
Cornelis van Gestel

Abstract Although herbicide and insecticide contamination of surface waters normally occurs in the form of mixtures, the toxicity interactions displayed by such mixtures have only rarely been characterized. This study evaluated the acute effects of single pesticides (paraquat dichloride and deltamethrin, tested in their commercial formulations Gramoxone 276 SL and Decis 25EC) and their equitoxic mixtures on the survival of adult male guppy fish (Poecilia reticulata). Mixture toxicity was evaluated against the reference models of Concentration Addition (CA) and Independent Action (IA). In the single treatments, the 72h LC10 and LC50 values were 1.5 and 6.0 mg a.s. L-1 and 0.53 and 3.6 µg a.s. L-1 for paraquat dichloride and deltamethrin, respectively. The equitoxic mixtures showed significant paraquat dichloride-deltamethrin antagonism, both based on the CA and the IA model, without significant dose-level dependent deviations.


2012 ◽  
Vol 485 ◽  
pp. 297-300
Author(s):  
Guang Hui Ding ◽  
Jing Zhang ◽  
Man Wang ◽  
Yi Hong Chen ◽  
Guo Yi Luo ◽  
...  

Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have emerged as two concerning contaminants in recent years. However, there is limited information about their mixture toxicity to aquatic organisms. In the present study, the single and mixture toxicity of PFOA and PFOS to zebrafish (Danio rerio) embryo were tested, and the mixture toxicity was predicted by concentration addition (CA) and independent action (IA) models. It is found that PFOS and PFOA have synergistic effect at 96 hpf, while this kind of synergistic effect is not obvious at 72 hpf. CA and IA models both could predict the 72 h mixture toxicity, while underestimate the 96 h mixture toxicity.


2021 ◽  
Vol 29 (1) ◽  
pp. 47-53
Author(s):  
Rully Adi Nugroho ◽  
Cornelis Adrianus Maria van Gestel

Although herbicide and insecticide contamination of surface waters normally occurs in the form of mixtures, the toxicity interactions displayed by such mixtures have only rarely been characterized. This study evaluated the acute effects of single pesticides (paraquat dichloride and deltamethrin, tested in their commercial formulations Gramoxone 276 SL and Decis 25EC) and their equitoxic mixtures on the survival of adult male guppy fish (Poecilia reticulata). Mixture toxicity was evaluated against the reference models of Concentration Addition (CA) and Independent Action (IA). In the single treatments, the 72h LC10 and LC50 values were 1.5 and 6.0 mg a.s. L-1 and 0.53 and 3.6 µg a.s. L-1 for paraquat dichloride and deltamethrin, respectively. The equitoxic mixtures showed significant paraquat dichloride-deltamethrin antagonism, both based on the CA and the IA model, without significant dose-level dependent deviations.


2013 ◽  
Vol 807-809 ◽  
pp. 684-687
Author(s):  
Hui Lin Ge ◽  
Shu Shen Liu ◽  
Jin Hui Luo ◽  
Qiong Fan ◽  
Yue Zhang ◽  
...  

The low-dose and combined effects of aniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline on photobacterium Vibrio qinghaiensis were predicted and evaluated by using concentration addition (CA) and independent action (IA) models. The mixtures effects can be predicted by CA and IA models, which indicate that aniline derivatives present additive toxicity.


2014 ◽  
Vol 369 (1656) ◽  
pp. 20130585 ◽  
Author(s):  
Thomas Backhaus

Analytical monitoring surveys routinely confirm that organisms in the environment are exposed to complex multi-component pharmaceutical mixtures. We are hence tasked with the challenge to take this into consideration when investigating the ecotoxicology of pharmaceuticals. This review first provides a brief overview of the fundamental approaches for mixture toxicity assessment, which is then followed by a critical review on the empirical evidence that is currently at hand on the ecotoxicology of pharmaceutical mixtures. It is concluded that, while the classical concepts of concentration addition and independent action (response addition) provide a robust scientific footing, several knowledge gaps remain. This includes, in particular, the need for more and better empirical data on the effects of pharmaceutical mixtures on soil organisms as well as marine flora and fauna, and exploring the quantitative consequences of toxicokinetic, toxicodynamic and ecological interactions. Increased focus should be put on investigating the ecotoxicology of pharmaceutical mixtures in environmentally realistic settings.


Author(s):  
Thomas Backhaus

Analytical monitoring surveys routinely confirm that organisms in the environment are exposed to complex multi-component pharmaceutical mixtures. We are hence tasked with the challenge to take this into consideration when investigating the ecotoxicology of pharmaceuticals. This review first provides a brief overview of the fundamental approaches for mixture toxicity assessment, which is then followed by a critical review on the empirical evidence that is currently at hand on the ecotoxicology of pharmaceutical mixtures. It is concluded that, while the classical concepts of Concentration Addition and Independent Action (Response Addition) provide a robust scientific footing, several knowledge gaps remain. This includes in particular the need for more and better empirical data on the effects of pharmaceutical mixtures on soil organisms as well as marine flora and fauna, and exploring the quantitative consequences of toxicokinetic, toxicodynamic and ecological interactions. Increased focus should be put on investigating the ecotoxicology of pharmaceutical mixtures in environmentally realistic settings.


Chemosphere ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. 735-740 ◽  
Author(s):  
Zhuang Wang ◽  
Jingwen Chen ◽  
Liping Huang ◽  
Ying Wang ◽  
Xiyun Cai ◽  
...  

Author(s):  
Nur Adila Adnan ◽  
Mohd Izuan Effendi Halmi ◽  
Siti Salwa Abd Gani ◽  
Uswatun Hasanah Zaidan ◽  
Mohd Yunus Abd Shukor

Predicting the crucial effect of single metal pollutants against the aquatic ecosystem has been highly debatable for decades. However, dealing with complex metal mixtures management in toxicological studies creates a challenge, as heavy metals may evoke greater toxicity on interactions with other constituents rather than individually low acting concentrations. Moreover, the toxicity mechanisms are different between short term and long term exposure of the metal toxicant. In this study, acute and chronic toxicity based on luminescence inhibition assay using newly isolated Photobacterium sp.NAA-MIE as the indicator are presented. Photobacterium sp.NAA-MIE was exposed to the mixture at a predetermined ratio of 1:1. TU (Toxicity Unit) and MTI (Mixture Toxic Index) approach presented the mixture toxicity of Hg2+ + Ag+, Hg2+ + Cu2+, Ag+ + Cu2+, Hg2+ + Ag+ + Cu2+, and Cd2+ + Cu2+ showed antagonistic effect over acute and chronic test. Binary mixture of Cu2+ + Zn2+ was observed to show additive effect at acute test and antagonistic effect at chronic test while mixture of Ni2+ + Zn2+ showing antagonistic effect during acute test and synergistic effect during chronic test. Thus, the strain is suitable and their use as bioassay to predict the risk assessment of heavy metal under acute toxicity without abandoning the advantage of chronic toxicity extrapolation.


Sign in / Sign up

Export Citation Format

Share Document