Effect of Laser Beam Diameter on Cut Edge of Steel Plates Obtained by Laser Machining

2013 ◽  
Vol 467 ◽  
pp. 227-232 ◽  
Author(s):  
Imed Miraoui ◽  
Mouna Zaied ◽  
Mohamed Boujelbene

Laser cutting is a thermal process which is used contactless to separate materials. In the present study, high-power laser cutting of steel plates is considered and the thermal influence of laser cutting on the cut edges is examined. The microstructure and the microhardness of the cut edge are affected by the input laser cutting parameter: laser beam diameter. The aim of this work is to investigate the effect of the laser beam diameter on the microhardness beneath the cut surface of steel plates obtained by CO2 laser cutting. The cut surface was studied based on microhardness depth profiles beneath the machined surface. The results show that laser cutting has a thermal effect on the surface microstructure and on the microhardness beneath the cut section. Also the microhardness of the hardening zone depends on the laser beam diameter.

2014 ◽  
Vol 974 ◽  
pp. 169-173 ◽  
Author(s):  
Imed Miraoui ◽  
Mohamed Boujelbene ◽  
Emin Bayraktar

In the present study, high-power CO2 laser cutting of steel plates has been investigated and the effect of the input laser cutting parameters on the cut surface quality is analyzed. The average roughness of the cut surface of the specimens, produced by different laser beam diameter and laser power, were measured by using roughness tester. The scanning electron microscopy SEM is used to record possible metallurgical alterations on the cut edge. The aim of this work is to investigate the effect of laser beam diameter and laser power on the cut surface roughness and on the heat affected zone width HAZ of steel plates obtained by CO2 laser cutting. An overall optimization was applied to find out the optimal cutting setting that would improve the cut surface quality. It was found that laser beam diameter has a negligible effect on surface roughness but laser power had major effect on roughness. The cut surface roughness decreases as laser power increases. Improved surface roughness can be obtained at higher laser power. Also, laser beam diameter and laser power had major effect on HAZ width. It increases as laser power increases.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Imed Miraoui ◽  
Mohamed Boujelbene ◽  
Mouna Zaied

The thermal effect of CO2high-power laser cutting on cut surface of steel plates is investigated. The effect of the input laser cutting parameters on the melted zone depth (MZ), the heat affected zone depth (HAZ), and the microhardness beneath the cut surface is analyzed. A mathematical model is developed to relate the output process parameters to the input laser cutting parameters. Three input process parameters such as laser beam diameter, cutting speed, and laser power are investigated. Mathematical models for the melted zone and the heat affected zone depth are developed by using design of experiment approach (DOE). The results indicate that the input laser cutting parameters have major effect on melted zone, heat affected zone, and microhardness beneath cut surface. The MZ depth, the HAZ depth, and the microhardness beneath cut surface increase as laser power increases, but they decrease with increasing cutting speed. Laser beam diameter has a negligible effect on HAZ depth but it has a remarkable effect on MZ depth and HAZ microhardness. The melted zone depth and the heat affected zone depth can be reduced by increasing laser cutting speed and decreasing laser power and laser beam diameter.


Author(s):  
Moo-Keun Song ◽  
Jong-Do Kim ◽  
Dong-Sig Shin ◽  
Su-Jin Lee ◽  
Dae-Won Cho

In this study, the parameters for underwater laser cutting of 50-mm thick stainless steel, which is typically used in nuclear power structures, are investigated. The focal position of laser beam significantly affects the cutting quality. In particular, in the cutting of the thick sample, change in the focal position determines the kerf width and the roughness of the cut surface. Moreover, the effects of the variation of kerf width and the cut surface characteristics on the focal position of the laser beam are investigated. As the focal position moved to the inside of the material, the upper kerf width increased, but the quality of the cut surface was improved.


1992 ◽  
Vol 90 (3) ◽  
pp. 545
Author(s):  
David B. Apfelberg ◽  
r Keijze ◽  
J. W Pickering ◽  
Gemert van

1981 ◽  
Vol 8 ◽  
Author(s):  
Ylva Nilsson

ABSTRACTAn investigation is done on partial surface hardening and alloying on cast iron by means of a high power laser beam. Samples of cast iron have been covered with alloying material i.e. Ti, Cr, Si, V and Nb respectively. The samples were irradiated with a 2.5 kW laser beam. A partial melting of the surface occured and the alloys were dissolved. The carbide structure in the resolidified part was governed by the alloy addition. The carbide structure was metallographicly analysed. The effect of different parameters as beam diameter, scanning rate, power and alloy content have been investigated and the crack frequency has been evaluated.


2013 ◽  
Vol T157 ◽  
pp. 014019
Author(s):  
S N Nikolić ◽  
A J Krmpot ◽  
N M Lučić ◽  
B V Zlatković ◽  
M Radonjić ◽  
...  

2019 ◽  
Vol 44 (1) ◽  
pp. 21-27
Author(s):  
Dobre Runchev ◽  
Filip Zdraveski ◽  
Irena Ivanova

The main objective of the research covered in this paper is to present results for the quality of surfaces thermally cut with a laser beam. The variety of steel materials used as samples on which laser cutting is performed are the following Č.0146 (1.0330), Č.0147 (1.0333), Č.2131 (1.5024), SS Ferbec CR, HARDOX 450 and HARDOX 550. Thermal cutting is carried out with a CNC controlled Fiber laser BAYKAL type BLS–F–1530. The quality of the cut surface is analyzed based on varying the power of the laser beam, changing cutting speed and the type of additional gas (oxygen, air and nitrogen). By visual inspection, measuring the roughness of the cut surface and measuring the width of the intersection, it is determined the influence of the factors like type of the base material, type of gases, the power of thelaser beam and the cutting speed, in accordance with the standards DIN EN ISO 9013-2002 and the JUS C.T3.022.


2000 ◽  
Vol 2000.2 (0) ◽  
pp. 189-190
Author(s):  
Akihito Matsuo ◽  
Masayuki Uchida ◽  
Hideo Furuhashi ◽  
Yoshiyuki Uchida

2010 ◽  
Vol 22 (4) ◽  
pp. 132-136 ◽  
Author(s):  
Wesley J. Marshall

Sign in / Sign up

Export Citation Format

Share Document