Fire Resistance Performance of High-Strength Concrete Columns Reinforced with Pre-Stressed Wire Ropes

2013 ◽  
Vol 470 ◽  
pp. 880-883 ◽  
Author(s):  
Heung Youl Kim ◽  
Hyung Jun Kim ◽  
Kyung Hoon Park ◽  
Bum Youn Cho ◽  
Jae Sung Lee

In this study, the fire resistance performance of high-strength concrete columns was evaluated to see the influence of lateral confinement reinforcement with wire ropes for improving ductility, fire resistance reinforcement with fiber cocktail and load ratio. For this, loaded fire test was conducted under ISO834 standard fire condition. The axial ductility of the 60MPa high-strength concrete column reinforced with pre-stressed wire ropes was improved and its fire resistance performance was also improved by 23% compared with its counterpart without wire ropes. The appropriate load for the 60MPa concrete column reinforced with wire ropes was found to be 70% of design load. The fire resistance performance of the 100MPa high-strength concrete column reinforced with pre-stressed wire ropes and fiber-cocktail was improved as much as 4 times compared with that reinforced with tie bars only. The appropriate load for the 100MPa columns was found to be less than 70% of design load in order for the columns to secure required fire resistance performance.

2014 ◽  
Vol 629-630 ◽  
pp. 273-278 ◽  
Author(s):  
Jian Zhuang Xiao ◽  
Qing Hai Xie ◽  
Yi Zhao Hou ◽  
Zhi Wei Li

A reliability analysis was conducted on high-strength concrete (HSC) columns during a fire. The influences of fire’s randomness and explosive spalling of concrete were investigated. The fire resistance for axial loading capacity of HSC columns was in terms of steel yield strength and concrete compressive strength with considering the effect of elevated temperatures. The load random variables included dead load and sustained live load. The JC method was applied to calculate the reliability index of the fire resistance of axially loaded HSC columns. It was found that the randomness of fire and explosive spalling of concrete had a significant influence on reliability of HSC columns.


2013 ◽  
Vol 671-674 ◽  
pp. 454-460
Author(s):  
Xiao Dan Fang ◽  
Guan Xin Chen ◽  
Hong Wei ◽  
Zheng Qin Yao

4 steel bar reinforced high-strength concrete column specimens were tested under axial compression in order to study how different height width ratios, different stirrup ratios and different steel bar reinforcement ratios influence the failure mode of the members and the bearing capacity. Results show that the steel bar reinforced high-strength concrete columns are applicable to practical engineering.


Sign in / Sign up

Export Citation Format

Share Document