gypsum board
Recently Published Documents


TOTAL DOCUMENTS

290
(FIVE YEARS 50)

H-INDEX

20
(FIVE YEARS 5)

2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Vivian N. Mbagwu ◽  
Olayinka O. Adewumi ◽  
Modupe A. Onitiri

The thermal properties of epoxy composites reinforced with iron ore tailings were used to investigate the thermal performance of the composite as heat resistant material. Thermal properties are important parameters for determining the behaviour and appropriate applications of materials. This paper focuses on investigating the thermal performance of epoxy composite reinforced with iron ore tailings (IOT) of particles sizes 150 µm, 10% reinforced. The thermal properties of the selected epoxy-IOT composite were specific heat capacity – 2352 J/kg-K, thermal resistivity – 4.788 °C-m/W, thermal diffusivity – 0.089 mm2/s and Thermal conductivity – 0.209 W/m-K. The selected epoxy-IOT composite was numerically compared with an existing material (gypsum board) of the following thermal properties:  specific heat capacity – 1090 J/kg-K, thermal resistivity – 3.87°C-m/W, thermal diffusivity – 0.333 mm2/s and Thermal conductivity – 0.258 W/m-K. The numerical analysis was done using Autodesk Fusion360, by modelling the materials as slabs.The heat transfer process of the composite and the prediction of the heat resistance capability were explained by comparing the results with an existing material (gypsum plasterboard) using their mechanical and thermal properties.The numerical results indicated that the epoxy-IOT composite has lower minimum temperature and thermal stress compared with the existing material (gypsum board), which implies that epoxy-IOT composite when used as a heat insulator will resist heat and sustain thermal stress better than the gypsum board of the same geometry under the same conditions. In conclusion, an epoxy-IOT composite of appropriate mixing ratio and geometry can be comfortable use as heat resistant materials. Keywords— Epoxy-IOT, Numerical Analysis, Temperature Distribution, Thermal Performance, Thermal Stress


2021 ◽  
Vol 5 (2) ◽  
pp. 116-120
Author(s):  
Ety Jumiati ◽  

Gypsum board is one of the advanced products of gypsum material with a mixture of fiber/fiber or other materials. Gypsum board has a weakness in its physical properties that easily absorb water. Therefore, there is a need for innovation in the manufacture of gypsum boards that will produce even better quality. The manufacture of gypsum board can utilize waste materials such as coconut shells and rice husks and latex as adhesives. The mixture of gypsum board materials including: gypsum, coconut shell, and rice husk used was 70%, 15%, 15% with latex variation 10%, 12%, 14%, 16%, 18% with FAS 0.5 and drying for 28 days. The parameters of the physical properties test include: density and thickness expansion, as well as microstructural testing to determine the morphology of the gypsum board sample. Analysis of the physical properties of gypsum board obtained optimal results, namely in sample A with a variation of 10% latex composition, the density value was 1.35 g/cm3, and the thickness expansion was 5.03% which met the SNI Standard 01-4449-2006. While the microstructure produces morphological images that show inhomogeneous distribution, particle agglomeration forms, and impurities


2021 ◽  
Vol 263 (1) ◽  
pp. 5838-5846
Author(s):  
Kristin Salenger

Wood stud construction is common in residential and hospitality buildings in some parts of the U.S.; however, there is a deficiency of field-tested sound insulation performance of partitions constructed with wood studs that are spaced closer than 16" on center. This study presents the sound isolation measurement results of a set of fifteen partitions within an existing facility that has been experiencing repeated complaints of poor acoustic privacy between horizontally adjacent spaces. The tested partition types varied between single stud, double stud, and single studs with resilient channel constructions. The walls had four materials of varying combinations applied, including 19/32" OSB, Type X gypsum board, proprietary enhanced gypsum board, and proprietary mass loaded vinyl. It was shown that the partition with enhanced gypsum board performed better than the same partition with Type X, the double stud partition performed lower than expected, and the addition of mass loaded vinyl to both double and single stud partitions did not affect the ASTC rating, among other findings.


2021 ◽  
Vol 11 (15) ◽  
pp. 7021
Author(s):  
Jui-Yen Lin ◽  
Yaw-Shyan Tsay ◽  
Pin-Chieh Tseng

Reverberation time (RT) is an important factor affecting the quality of indoor acoustics. Using sound-absorbing materials is one method for quickly and effectively controlling RT, and installation in the ceiling is a common location. Sound-absorbing ceilings come in many forms, with light steel joist ceilings commonly used in office spaces, classrooms, and discussion rooms. Light steel joist ceilings are often matched with sound-absorbing materials such as gypsum board, mineral fiberboard, rock wool, and coated glass wool, but such materials may have durability and exfoliation problems. Therefore, considering performance and health, in this research, we aimed to design an expanded metal mesh (EMM) structure specimen for sound-absorption material, namely folded expanded metal mesh (FEMM). The results show that the FEMM can significantly improve the sound-absorption performance of the expanded metal mesh. Theof single panel is 0.05–0.35, and theof FEMM is 0.65–0.85. On the other hand, the sound-absorption performance of the full frequency band has been significantly improved. Furthermore, the field validation result shows that RT decreased from 1.05–0.56 s at 500 Hz, meanwhile, the sound pressure level (SPL) is still evenly distributed, and speech clarity (C50) is increased by 5.6–6.5.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4144
Author(s):  
Jui-Yen Lin ◽  
Chieh-Ting Yang ◽  
Yaw-Shyan Tsay

Cross-laminated Timber (CLT) has become an emerging board material of wood construction that is strong enough to sustain a high-rise building. However, many wooden congregate housing units overseas that utilize CLT have poor sound environments because the low mass of such wood influences sound insulation performance. In this research, we explored the effect of different CLT walls on sound insulation performance and integrated applicable sound insulation simulation tools to simplify the process of designing a CLT wall structure. This research aimed at a double wall and CLT combined with a gypsum board as the research object. The sound insulation performance test was carried out in a laboratory, while the sound insulation performance of the structure was predicted through simulation tools and prediction models and then compared with the measured values to verify the applicability of the simulation tool. The CLT with a double wall and CLT with gypsum board (CLT + GB) achieved Rw of 50 dB. The numerical simulation had better prediction performance than INSUL at the double wall, while the double wall with cavity structure was close to the measured result via mass law calculation. The INSUL-predicted CLT with a gypsum board at 500 Hz~3150 Hz was close to the measured value.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Duozhi Wang ◽  
Xudong Zhi ◽  
Fangxu Zhu ◽  
Yixing Wang

A quasi-static experimental program of light-gauge steel keel gypsum board partition walls (LSKGBPW) was carried out to evaluate the seismic damage phenomena, failure mechanisms, and fragility. The 15 specimens in five groups were designed per current Chinese codes and engineering practice. Then, three damage states were defined based on the damage and repair measures, and the fragility data of each group were presented, providing basic data for the estimation of seismic damage and consequential loss of nonstructural components.


2021 ◽  
Vol 11 (11) ◽  
pp. 4886
Author(s):  
Ni Komang Ayu Agustini ◽  
Andreas Triwiyono ◽  
Djoko Sulistyo ◽  
S Suyitno

This paper focuses on the effect of polypropylene (PP) fibers on the mechanical properties and thermal conductivity of fly ash-based geopolymer foams. Class C Fly ash (FA) was used as a binder material. A mixture of sodium silicate (SS) and sodium hydroxide (SH) was used as an alkaline activator of the geopolymer binder. The foams were prepared mechanically by mixing the foaming agent with distilled water at high pressure. The foams were added to the geopolymer admixture with volumes of 40% and 60%. A small dosage of PP was varied from 0%, 0.25%, and 0.50% by weight of fly ash (FA). The result showed that the strength of foamed geopolymer rises as the PP fiber content increases. The PP fiber was proven to increase the tensile strength of foamed geopolymer due to the ability of PP fiber to connect the crack and improve the tensile strength. The PP fiber amount in this study significantly affects the thermal conductivity of foamed geopolymer. However, the thermal conductivity in this study has the same properties as lightweight concrete and a little higher than gypsum board.


2021 ◽  
Vol 13 (9) ◽  
pp. 4643
Author(s):  
Raül Serra-Fabregà ◽  
Joan-Lluís Zamora-Mestre

Old dwellings usually have shortfalls in insulation, acoustic and thermal, and in security of electrical services in the interior partition walls. A common building solution is to add a wall lining with a laminate base gypsum board that improves both acoustic and thermal insulation and facilitates a new invisible cable layout without demolition. Conventional solutions have had limited success because of time consumption, environmental impact and cost. This research aimed to create an integrated building system to carry out these interior building refurbishment works quickly, cleanly and with low inconvenience and environmental impact. The research specifically focused on incorporating new molded materials that have a low environmental impact and improving the handling and future modification of thewall lining system. In response to the above goals, the product development methodology was applied to the design of an internal panel to be inserted between the existing partition wall and the closure wallboard, which is usually laminated base gypsum board (LGB). The proposed internalpanel is molded with recycled cellulose pulp (Biprocel) and has adequate relief designed to improve cable layout tasks and better join the laminate base gypsum board to the existing wall face. The development resulted from collaboration between the public administration, university researchers and undergraduate students in the co-design process. This research contributes to improving the applications of recycled cellulose fibers in molded panels for the building industry, particularly in refurbishment activities.


Author(s):  
Remigijus Guobys ◽  
Vadim Mokshin

This article analyzes gypsum board dehydration effect on heat conductivity and deformation of multi-layered mechanical structures subjected to temperature changes. Specially designed structures (fire doors) consisting of steel sheets with stone wool and gypsum insulating layers in between were heated in furnace for a specified period of time of not less than 60 min. Temperature versus time curves and deformations of multi-layered structures were obtained. Experimental results were verified by numerical simulation. Experimental data was found to be in good agreement with numerical simulation results. The percent differences between door temperatures from simulation and fire test don’t exceed 9 %. This shows that thermal behavior of such multi-layered structures can be investigated numerically avoiding time-consuming and expensive fire tests. The data obtained allowed to calculate convective heat transfer coefficient of gypsum board, which was fitted into multi-layered mechanical structure. It was found that it is more advantageous to place gypsum layer in the middle of the structure rather than closer to the fire source in order to cool the structure more efficiently during fire.


Sign in / Sign up

Export Citation Format

Share Document