Modelling the Effect of Flexural Vibration on Sound Absorption of a Micro-Perforated Panel Using Wave Propagation Method

2013 ◽  
Vol 471 ◽  
pp. 255-260
Author(s):  
Azma Putra ◽  
Muhammad Sajidin Py ◽  
Norliana Salleh

Micro-perforated panel (MPP) is well known as the alternative green sound absorbing material replacing the synthetic porous absorber. Several works have been established which model the sound absorption performance of the MPP with various arrangements. However, most existing models are for MPP with rigid condition and rarely discuss the effect of vibration due to the impinging sound. In this paper, a simple approach using wave propagation technique is proposed to take into account the effect of flexural wave in the MPP on its sound absorption. The model begins with an MPP coupled with a solid panel separated by an air gap. The impedance of the back solid panel can then be adjusted to a very large value to simulate a rigid wall.

2015 ◽  
Vol 773-774 ◽  
pp. 247-252 ◽  
Author(s):  
Hanif Abdul Latif ◽  
Musli Nizam Yahya ◽  
Mohamed Najib Rafiq ◽  
Mathan Sambu ◽  
Mohd Imran Ghazali ◽  
...  

As the population increases, the demand of a comfortable environmental such as sound pollution is getting higher. Sound pollutions also have become worsen and creating concerns for many peoples. Due to this problem, synthetic materials as acoustic absorbers still applied as commonly acoustical panels and this material may hazardous to human health and contribute significantly a pollution to the environments. However, researchers have interested in conducting their research on natural fiber to be an alternative sound absorber. This study investigated the potential of oil palm Mesocarp fiber for sound absorbing material. The Mesocarp fibers were mixed with polyurethane (PU) as binder with ratio of 70:30. The thickness was varied in 10mm, 20mm, 30mm, and 40mm. This study also investigated the air gap of 5mm and 10mm in the sound absorption performance. Impedance Tube Method was used to measure sound absorption coefficient (a). The measurement was done on accordance with ASTM E1050-98, which is the standard test method for impedance and absorption of acoustical materials using a tube. The results showed that the optimum value for Mesocarp fiber is 0.93. The optimum value obtained at 5000 Hz. The influence of air gap increases the sound absorption especially from 250 Hz to 4000 Hz. These results indicate that fiber from Mesocarp is promising to be used sound absorbing material.


2017 ◽  
Vol 36 (4) ◽  
pp. 376-398 ◽  
Author(s):  
Pritesh V Bansod ◽  
T Sai Teja ◽  
Amiya R Mohanty

In industrial and architectural applications, noise can be controlled using sound-absorbing materials. Natural materials are now gaining importance in the noise control engineering as they have advantages like low cost, eco-friendly, easy to produce, etc. Jute is one of such natural materials, which can be used as a sound-absorbing material. Micro-perforated panels along with three different types of jute felts are used in a multilayer sound absorber configuration to improve its sound absorption. The sound absorption performance of these multilayer sound absorbers is evaluated by using the transfer matrix method and experimental method. Dependence of sound absorption performance on the placement of micro-perforated panels in a multilayer sound absorber is also studied. It is observed that the sound absorption performance depends on the position of micro-perforated panels in a multilayer sound absorber.


2020 ◽  
Vol 12 (14) ◽  
pp. 5533 ◽  
Author(s):  
Jorge P. Arenas ◽  
Romina del Rey ◽  
Jesús Alba ◽  
Roberto Oltra

Research on sound-absorbing materials made of natural fibers is an emerging area in sustainable materials. In this communication, the use of raw esparto grass as an environmentally friendly sound-absorbing material is explored. Measurements of the normal-incidence sound-absorption coefficient and airflow resistivity of three different types of esparto from different countries are presented. In addition, the best-fit coefficients for reasonable prediction of the sound-absorption performance by means of simple empirical formulae are reported. These formulae require only knowledge of the airflow resistivity of the fibrous material. The results presented in this paper are an addition to the characterization of available natural fibers to be used as alternatives to synthetic ones in the manufacturing of sound-absorbing materials.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edgar V.M. Carrasco ◽  
Rejane C. Alves ◽  
Mônica A. Smits ◽  
Vinnicius D. Pizzol ◽  
Ana Lucia C. Oliveira ◽  
...  

Abstract The non-destructive wave propagation technique is used to estimate the wood’s modulus of elasticity. The propagation speed of ultrasonic waves is influenced by some factors, among them: the type of transducer used in the test, the form of coupling and the sensitivity of the transducers. The objective of the study was to evaluate the influence of the contact pressure of the transducers on the ultrasonic speed. Ninety-eight tests were carried out on specimens of the species Eucalyptus grandis, with dimensions of 120 × 120 × 50 mm. The calibration of the pressure exerted by the transducer was controlled by a pressure gauge using a previously calibrated load cell. The robust statistical analysis allowed to validate the experimental results and to obtain consistent conclusions. The results showed that the wave propagation speed is not influenced by the pressure exerted by the transducer.


2021 ◽  
pp. 004051752110155
Author(s):  
Min Peng ◽  
Xiaoming Zhao ◽  
Weibin Li

Perforated materials in the traditional sense are rigid, usually dense, costly and inflexible. For this study, polyester/cotton blended woven fabric as the base fabric, nano-SiO2 (silicon dioxide) as the functional particles and PU (polyurethane) as the matrix were selected. Accordingly, flexible PU/SiO2 perforated coating composites with different process parameters were developed. The influence of the nano-SiO2 content, perforation diameter, perforation rate, number of fiber felt layers and cavity depth on the sound absorption coefficient were investigated. The resonant frequencies of materials with different cavity depths were evaluated by both theoretical calculation and experimental method. It was found that the flexible perforated composite has good sound absorption and mechanical properties, and has great potential for applications requiring soft and lightweight sound absorption materials.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1091 ◽  
Author(s):  
Dengke Li ◽  
Daoqing Chang ◽  
Bilong Liu

The diffuse sound absorption was investigated theoretically and experimentally for a periodically arranged sound absorber composed of perforated plates with extended tubes (PPETs) and porous materials. The calculation formulae related to the boundary condition are derived for the periodic absorbers, and then the equations are solved numerically. The influences of the incidence and azimuthal angle, and the period of absorber arrangement are investigated on the sound absorption. The sound-absorption coefficients are tested in a standard reverberation room for a periodic absorber composed of units of three parallel-arranged PPETs and porous material. The measured 1/3-octave band sound-absorption coefficients agree well with the theoretical prediction. Both theoretical and measured results suggest that the periodic PPET absorbers have good sound-absorption performance in the low- to mid-frequency range in diffuse field.


1984 ◽  
Vol 27 (231) ◽  
pp. 2008-2015 ◽  
Author(s):  
Kenzou NONAMI ◽  
Noboru TOMINARI ◽  
Takayoshi TOTANI

Author(s):  
Jesús Morales-Valdez ◽  
Luis Alvarez-Icaza

A novel technique to estimate stiffness in buildings is presented. In contrast with most of the available work in the literature that resorts to diverse forms of modal analysis, this local technique is based on the propagation of a Ricker pulse through the structure and on measuring the wave arrival times at each story of the building, represented as a single layer in a multiple stratum model. These arrival times are later used to recuperate building stiffness at each story. Wave propagation is based on the Thomson-Haskell method, that allows to generalize the wave propagation method to multi-story buildings without significant changes to the original formulation. The number of calculated parameters is small in comparison with methods based on modal analysis. This technique provides and quick and easy methodology to assess building integrity and is an interesting alternative to verify results obtained by other identification methods. Simulation results for building with heterogeneous characteristics across the stories confirm the feasibility of the proposal.


Sign in / Sign up

Export Citation Format

Share Document