Fabrication High Aspect Ratio Nanometer Holes on the Alumina Based on Self-Organization Technology

2014 ◽  
Vol 472 ◽  
pp. 725-728
Author(s):  
Yi Gui Li ◽  
Ling Han Li ◽  
Susumu Sugiyama ◽  
Jing Quan Liu

In this paper, a nanofabrication technology of alumina self-organization method for deep and self-arranged nanometer holes on high purity aluminum is presented. Deep and self-arranged nanometer holes can be used as antireflection structures, polarizing elements, guided-mode resonance filters and high efficiency diffraction optical elements. The fabrication technology provided an effective method for low-cost, large-scale manufacturing high aspect ratio nanoholes.The deep nanoholes structure is fabricated by two anodizing processes on aluminum. The theoretical calculation of reflectivity for the fabricated deep holes G-solver sofeware while the measurement setup for the reflectivity of the deep nanoholes is self-made optical parameter test system.The results show that the calculated reflectivity of the deep holes is below 8.0% within the visible wavelength range, while the measured reflectivity of the fabricated nanometer holes is under 8.30% within the wavelength range of 400-760nm and it agrees well with the theoretical analysis result.

Author(s):  
Xiaobo Liao ◽  
Jian Zhuang ◽  
Jiulin Yang ◽  
Lei Cheng ◽  
Qiangqiang Zheng ◽  
...  

1999 ◽  
Author(s):  
Fan-Gang Tseng ◽  
Gang Zhang ◽  
Uri Frodis ◽  
Adam Cohen ◽  
Florian Mansfeld ◽  
...  

Abstract EFAB (“Electrochemical FABrication”) is a new micromachining process utilizing an innovative “Instant Masking” (IM) technique to electrochemically deposit an unlimited number of metal layers for microfabrication. Through this approach, high-aspect-ratio microstructures with arbitrary 3-D geometry can be rapidly and automatically batch-fabricated at low temperature (< 60 °C) using an inexpensive desktop machine. IC-MEMS integration can also be carried out by this low temperature process.


2007 ◽  
pp. 658-662
Author(s):  
R. Krajewski ◽  
J. Krezel ◽  
M. Kujawinska ◽  
O. Parriaux ◽  
S. Tonchev ◽  
...  

2005 ◽  
Vol 872 ◽  
Author(s):  
J. R. Huang ◽  
B. Bai ◽  
J. Shaw ◽  
T. N. Jackson ◽  
C. Y. Wei ◽  
...  

AbstractThis paper presents a novel method to create and integrate micro-machined devices and high aspect-ratio (height-to-width ratio) microstructures in which the microstructures are built up using multiple layers of photopolymer film and/or viscous solution. Very high aspect-ratio 2-and 3-dimensional (2-D and 3-D) microstructures were constructed by stacking photo-imageable polymer films. Such films may be dry films applied by lamination or solution layers applied by bar coating, or doctor blade coating. Photolithography is used in both cases to define the microstructure. This additive process of thin-film micromachining facilitates high aspect-ratio microstructure fabrication. We have demonstrated structures of up to 12-layers comprising 2-D arrays of deep trenches (180 μm deep and 25 μm wide) and a 2-layer SU-8 micro-trench array with an aspect ratio up to 36 on glass substrates. Miniaturized structures of interconnected reservoirs as small as 50 μm × 50 μm × 15 μm (∼38 pico liter storage capacity) are also being fabricated, along with a novel 5-layer microfluidic channel array and a vacuum-infiltration process for fluid manipulation. This method has the potential to create functional large-area micro-devices at low-cost and with increased device flexibility, durability, prototyping speed, and reduced process complexity for applications in optoelectronics, integrated detectors, and bio-devices. The novel multi-layer photopolymer dry film and solution process also allows microstructures in micro-electro-mechanical systems (MEMS) to be built with ease and provides the functionality of MEMS integration with electronic devices and integrated circuits (ICs).


2016 ◽  
Vol 28 (7) ◽  
pp. 5308-5314 ◽  
Author(s):  
Yongyun Mao ◽  
Hongwei Yang ◽  
Changyi Hu ◽  
Junmei Guo ◽  
Xianwei Meng ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xing Xing ◽  
Zaiqin Man ◽  
Jie Bian ◽  
Yadong Yin ◽  
Weihua Zhang ◽  
...  

AbstractFast, low-cost, reliable, and multi-component nanopatterning techniques for functional colloidal nanoparticles have been dreamed about by scientists and engineers for decades. Although countless efforts have been made, it is still a daunting challenge to organize different nanocomponents into a predefined structure with nanometer precision over the millimeter and even larger scale. To meet the challenge, we report a nanoprinting technique that can print various functional colloidal nanoparticles into arbitrarily defined patterns with a 200 nm (or smaller) pitch (>125,000 DPI), 30 nm (or larger) pixel size/linewidth, 10 nm position accuracy and 50 nm overlay precision. The nanopatterning technique combines dielectrophoretic enrichment and deep surface-energy modulation and therefore features high efficiency and robustness. It can form nanostructures over the millimeter-scale by simply spinning, brushing or dip coating colloidal nanoink onto a substrate with minimum error (error ratio < 2 × 10−6). This technique provides a powerful yet simple construction tool for large-scale positioning and integration of multiple functional nanoparticles toward next-generation optoelectronic and biomedical devices.


2008 ◽  
Vol 3 (4) ◽  
pp. 046002 ◽  
Author(s):  
Kerstin Koch ◽  
Anna Julia Schulte ◽  
Angelika Fischer ◽  
Stanislav N Gorb ◽  
Wilhelm Barthlott

2003 ◽  
Vol 42 (3) ◽  
pp. 921-924 ◽  
Author(s):  
Xiao-Lin Li ◽  
Jun-Feng Liu ◽  
Ya-Dong Li

Sign in / Sign up

Export Citation Format

Share Document