Computational Modal Analyses of a Steel Nuclear Containment Vessel

2014 ◽  
Vol 490-491 ◽  
pp. 625-628
Author(s):  
Chun Lai Tian ◽  
Lin Yang ◽  
Rui Chang Zhao

In order to obtain frequencies and modal shapes of a nuclear containment vessel, the computational analyses have been carried out through free structure finite element analysis software. The finite element model of the vessel is built with shell element and solved by the type of the dynamics frequency solver. Results show that mainly deformation area is on the vessels cylindrical shell and the maximum displacements occur at its center. Compared with the design validation values, the frequencies obtained are a little lower. It may be because that the model built here is a completely vessel shell without any hatches or attachments. It is provided that a reliable method of computational structural analyses for the nuclear containment without commercial software cost.

2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


2020 ◽  
Vol 198 ◽  
pp. 03025
Author(s):  
Kang Le ◽  
Zhang tingjun ◽  
Tong Junhui ◽  
Chen Di ◽  
Qian Baoyuan

Thermal drainage consolidation method is a new technology of soft foundation treatment, which involves the coupling of thermo-hydro-mechanical field, and the action mechanism is complex. In this paper, taking the model test of thermal drainage consolidation as the prototype, the finite element model of thermal drainage consolidation is established by using Abaqus software, then, the numerical results are obtained and are compared with the results of model test, and the reliability of the numerical model is verified. The results show that when the applied load is constant, the higher the temperature is, the faster the consolidation speed of soil is, but with the increase of temperature, the consolidation effect of the same temperature difference will gradually weaken. In addition, the thermal drainage consolidation method can achieve the best treatment effect when the temperature of the soil reaches 60 ℃.


2010 ◽  
Vol 102-104 ◽  
pp. 17-21
Author(s):  
Bin Zhao

In order to study the static and dynamical characteristics of the crankshaft, ANSYS software was used to carry out the corresponding calculations. The entity model of the crankshaft was established by UG software firstly, and then was imported into ANSYS software for meshing, and then the finite element model of the crankshaft was constructed. The crankshaft satisfied the requirement of stiffness and strength through static analysis. The top six natural frequencies and corresponding shapes were acquired through modal analysis, and the every order critical rotating speed of the crankshaft was calculated. The fatigue life of the crank was calculated by fatigue module of ANSYS software finally. These results offered the theoretical guidance for designing, manufacturing and repairing the crankshaft.


1999 ◽  
Author(s):  
Richard B. Englund ◽  
David H. Johnson ◽  
Shannon K. Sweeney

Abstract A finite element analysis (FEA) model of the interaction of a nut and bolt was used to investigate the effects of sliding, friction, and yielding in a bolted connection. The finite element model was developed as a two-dimensional, axisymmetric system, which allowed the study of axial and radial loading and displacements. This model did not permit evaluation of hoop or torsional effects such as tightening or the helical thread form. Results presented in this paper include the distribution of load between consecutive threads, the relative sliding along thread faces, and the stress distribution and regions of yielding in the model. Finally, a comparison to previous, linear analysis work and to published experimental data is made to conclude the paper.


2012 ◽  
Vol 430-432 ◽  
pp. 492-496
Author(s):  
Yu Yan Liu ◽  
Hao Li ◽  
Lin Chen

Through out the establishment of heavy rail entity model and the finite element model of straightening for different kinds of heavy rail after the residual stress in straightening investigated . Analysed U75V、U76CrRE、U71Mn and U75VM the four different kinds in 8+1 level straightening of the seven regional deformation area rail head, rail waist, rail base vertical stress distribution rule.


2014 ◽  
Vol 945-949 ◽  
pp. 1143-1149
Author(s):  
Hai Xia Sun ◽  
Hua Kai Wei ◽  
Xiao Fang Zhao ◽  
Jia Rui Qi

The finite element model of the concrete mixing truck’s frame is builded by using shell as basic element, and the process of building the finite element model of the balance suspension is introduced in detail. Based on this, frame’s stress on five types of typical operating conditions are calculated by using the finite element analysis software, NASTRAN, and results can show the dangerous position and the maximum stress position on the frame. The analysis result on structural strength can provide the basis for further improving the frame structure.


2013 ◽  
Vol 273 ◽  
pp. 588-592
Author(s):  
Zhi Yuan Yan ◽  
Dong Mei Wu ◽  
Li Tao Zhang ◽  
Jun Zhao

In order to obtain high-quality analytical results of the finite element model, it is essential to construct a three dimensional geometric model. The paper reconstructed an accurate three dimensional geometric model of cervical spine segments (C4-C7). The process of reconstruction included three-dimensional reconstruction, smooth processing, contour generation, grid generation and fitting surface. Moreover, the result of reconstruction was evaluated ultimately. The model was validated to be smooth and reasonable, and could meet the requirements of finite element analysis. The method is not merely applied to reconstruct the geometric model of the cervical spine. It is a way to construct the model of the skeletal system of the human body.


Author(s):  
Budy Notohardjono ◽  
Shawn Canfield ◽  
Suraush Khambati ◽  
Richard Ecker

Shorter development design schedules and increasingly dense product designs create difficult challenges in predicting structural performance of a mainframe computer’s structure. To meet certain certification benchmarks such as the Telcordia Technologies Generic Requirements GR-63-CORE seismic zone 4 test profile, a physical test is conducted. This test will occur at an external location at the end of design cycle on a fully functional and loaded mainframe system. The ability to accurately predict the structural performance of a mainframe computer early in the design cycle is critical in shortening its development time. This paper discusses an improved method to verify the finite element analysis results predicting the performance of the mainframe computer’s structure long before the physical test is conducted. Sine sweep and random vibration tests were conducted on the frame structure but due to a limitation of the in-house test capability, only a lightly loaded structure can be tested. Evaluating a structure’s modal stiffness is key to achieving good correlation between a finite element (FE) model and the physical system. This is typically achieved by running an implicit modal analysis in a finite element solver and comparing it to the peak frequencies obtained during physical testing using a sine sweep input. However, a linear, implicit analysis has its limitations. Namely, the inability to assess the internal, nonlinear contact between parts. Thus, a linear implicit analysis may be a good approximation for a single body but not accurate when examining an assembly of bodies where the interaction (nonlinear contact) between the bodies is of significance. In the case of a nonlinear assembly of bodies, one cannot effectively correlate between the test and a linear, implicit finite element model. This paper explores a nonlinear, explicit analysis method of evaluating a structure’s modal stiffness by subjecting the finite element model to a vibration waveform and thereafter post processing its resultant acceleration using Fast Fourier Transformation (FFT) to derive the peak frequencies. This result, which takes into account the nonlinear internal contact between the various parts of the assembly, is in line with the way physical test values are obtained. This is an improved method of verification for comparing sine sweep test data and finite element analysis results. The final verification of the finite element model will be a successful physical seismic test. The tests involve extensive sequential, uniaxial earthquake testing in both raised floor and non-raised floor environments in all three directions. Time domain acceleration at the top of the frame structure will be recorded and compared to the finite element model. Matching the frequency content of these accelerations will be proof of the accuracy of the finite element model. Comparative analysis of the physical test and the modeling results will be used to refine the mainframe’s structural elements for improved dynamic response in the final physical certification test.


Sign in / Sign up

Export Citation Format

Share Document