Experimental Research on Influence Factors of Thermal Contact Resistance between Joints

2011 ◽  
Vol 52-54 ◽  
pp. 1560-1564
Author(s):  
Hong Lin Zhao ◽  
Dian Xin Li ◽  
Yu Mei Huang ◽  
Feng Gao ◽  
Jia Yu ◽  
...  

Contact heat transfer are widely used in mechanical system and research on thermal contact resistance is a significant link in engineering application. In this article, main influencing factors of thermal contact resistance such as material characteristics, contact pressure, surface roughness, intermediate medium had been further researched by experimental methods, and the relations between pressure and thermal contact resistance had been taken under different materials, different suface processing quality and different medium. Several other problems related to thermal contact resistance had also been discussed. The research contents provide reference for the application of thermal contact resistance and reasonable design of mechanical structure.

2000 ◽  
Author(s):  
Xiao Ma ◽  
Jamil A. Khan ◽  
Curtis A. Rhodes ◽  
Allen Smith ◽  
L. Larry Hamm

Abstract In a proposed nuclear application (production of Tritium using an accelerator, Accelerator Production of Tritium (APT)) lead is proposed to be used as a shield in the blanket module. This lead will be encased in aluminum cladding. The energy transfer rate from the lead to the cooling water will be a function of the thermal contact resistance (TCR) between lead and aluminum. Presently, data for contact resistance for this application does not exists in the literature. An experimental investigation has been conducted to determine the thermal contact resistance between lead and aluminum in vacuum. In this study we investigate the effect of pressure, surface roughness and interface temperature on the contact resistance. The experimentally determined range of contact resistance was found to be from 3.74×10−4K-m2/W to 11.45×10−4K-m2/W at 100°C∼200°C under 120∼370psi (0.827∼2.551MPa). The contact resistance increases to 168×10−4K-m2/W at small external pressure of 2.0∼3.9psi (0.013∼0.027MPa). The contact resistance decreases with increasing in contact pressure. Interface temperature and surface roughness do not affect the contact resistance significantly. There is a slight increase in contact conductance with increasing temperature. The experimental results provide contact resistance data, which should be a good reference for the APT design evaluation.


2018 ◽  
Vol 537 ◽  
pp. 150-154 ◽  
Author(s):  
Dongxu Wu ◽  
Congliang Huang ◽  
Jinxin Zhong ◽  
Zizhen Lin

2020 ◽  
Vol 27 (7) ◽  
pp. 617-627
Author(s):  
Yuanyuan Tian ◽  
Mengjun Zhang ◽  
Junli Wang ◽  
Anbang Liu ◽  
Huaqing Xie ◽  
...  

Small ◽  
2021 ◽  
pp. 2102128
Author(s):  
Taehun Kim ◽  
Seongkyun Kim ◽  
Eungchul Kim ◽  
Taesung Kim ◽  
Jungwan Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document