Portable Pressure Test System for Brake of Rail Transit

2014 ◽  
Vol 530-531 ◽  
pp. 245-248
Author(s):  
Sen Jie Cui ◽  
Chang Qi Yang

This paper designs a pressure signal acquisition device for brake of rail transit, and establish a framework for the pressure signal test system based on the Single Chip Micyoco (SCM for short) C8051F350. It gives a brief introduction of the whole process for the test system, and emphatically analysis the part of the pressure sensors, the power source, the display and the communication. Lastly, we adjust the factor of the whole test system and assemble the system to test the pressure portably.

2010 ◽  
Vol 97-101 ◽  
pp. 4243-4246
Author(s):  
Zhan Shu He ◽  
Ya Jun Liu ◽  
Jun Liu ◽  
Jia Bao Wang

In the dispenser for gasoline there exist three problems: excessive pressure caused by water hammer, inadequacy of oil-gas separation and cavitation. A pressure test system of the dispenser for gasoline is established by using pressure transducers and a digital signal acquisition system. Results show that the pressure test system can not only conduct real-time and reliable diagnosis of the dispenser pressure, but also provide guideline on its performance optimization.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 569
Author(s):  
Jianzhong Chen ◽  
Ke Sun ◽  
Rong Zheng ◽  
Yi Sun ◽  
Heng Yang ◽  
...  

In this study, we developed a radial artery pulse acquisition system based on finger-worn dense pressure sensor arrays to enable three-dimensional pulse signals acquisition. The finger-worn dense pressure-sensor arrays were fabricated by packaging 18 ultra-small MEMS pressure sensors (0.4 mm × 0.4 mm × 0.2 mm each) with a pitch of 0.65 mm on flexible printed circuit boards. Pulse signals are measured and recorded simultaneously when traditional Chinese medicine practitioners wear the arrays on the fingers while palpating the radial pulse. Given that the pitches are much smaller than the diameter of the human radial artery, three-dimensional pulse envelope images can be measured with the system, as can the width and the dynamic width of the pulse signals. Furthermore, the array has an effective span of 11.6 mm—3–5 times the diameter of the radial artery—which enables easy and accurate positioning of the sensor array on the radial artery. This study also outlines proposed methods for measuring the pulse width and dynamic pulse width. The dynamic pulse widths of three volunteers were measured, and the dynamic pulse width measurements were consistent with those obtained by color Doppler ultrasound. The pulse wave velocity can also be measured with the system by measuring the pulse transit time between the pulse signals at the brachial and radial arteries using the finger-worn sensor arrays.


2014 ◽  
Vol 953-954 ◽  
pp. 123-127
Author(s):  
Rong Xia Sun ◽  
Xiao Ning Sun ◽  
Shuo Nan Wang

In this paper, the design is with the single chip microcomputer as the core of automatic tracking controller. The system is mainly composed of the signal acquisition part, the signal conditioning part, a control circuit and a drive circuit. The signal collection circuit composed of photosensitive resistance sensors to collect light signal, signal conversion circuit with voltage follower LM324 convert the change of light intensity to the change of the voltage, through the voltage comparator LM393 produce high and low level control stepping motor rotation; Control circuit use the AT89S52 as the main control device, output different control signals to the driving circuit; Driving circuit use the ULN2003 as driver stepper motor. Is obtained by simulation debugging, physical test, the error rate is less than 5%, in order to realize the efficient utilization of solar energy.


2012 ◽  
Vol 532-533 ◽  
pp. 398-402
Author(s):  
Yu Lan Wei ◽  
Bing Li ◽  
Sui Ying Jin ◽  
Kai Kai Chen

An integrated system to measure mechanical functions of material or structure is introduced. This system is able to provide more detection methods and experiment environments. And it can discover the characteristics and mechanisms of damnification and breakage in materials, considering the effects of loading and environments. Material functions were analyzed in many aspects, including loading, strain, light, sound, temperature and infrared to ensure the safety of materials and configuration of unmanned plane. Current study has laid a foundation for realizing optimal design of unmanned plane. In this paper, theory, components, and function of the system were discussed, as well as signal acquisition and analysis.


2019 ◽  
Vol 288 ◽  
pp. 01007
Author(s):  
Liao Hongbo ◽  
Yang Dan ◽  
Yin Fenglong ◽  
Liang Xiaodong ◽  
Li Erkang ◽  
...  

In order to further increase the volume, reduce the weight and manufacturing cost, the key structural parameters of thin-walled metal packing container are optimized. The instability conditions under circumferential external pressure and axial load are analyzed, a mathematical model with the constraint of critical instability strength, the maximum volume and minimum mass as the objective is constructed. Multi-objective optimization method with nonlinear constraints is used to solve the key structural parameters, such as wall thickness, diameter and height, and the optimization result is calculated by fgoalattain() function in the Matlab optimization toolbox. The instability pressure test system is constructed, the instability pressure of the optimized thin-wall metal packing container is tested. The results show that the unstable pressure is higher than 120kPa, which are better than the design index.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1509 ◽  
Author(s):  
Krzysztof Adamski ◽  
Bartosz Kawa ◽  
Rafał Walczak

In this paper we present a 3D printed flow meter based on venturri effect. Dimensions of the microchannels are 800 µm for wider and 400 µm for thinker channel. Application of different type of sensors was investigated: differential, absolute and digital barometer. Results of measurement of differential pressure and calculation of liquid flow are shown. Presented microfluidics device can be also easy adapted for modular systems. Presented flow meter is the first integration of commercial available sensors and 3D printed microfluidics structure in a single chip.


2012 ◽  
Vol 590 ◽  
pp. 333-336
Author(s):  
Qian Zhao ◽  
Shan Zhen Xu ◽  
Qi Chen ◽  
Cheng Wang

A kind of multiple parameter data acquisition system was designed based on single-chip microcomputer which can realized the data acquisition of temperature and DC motor speed. The data acquisition system consists of sensor, signal processing circuit, single-chip microcomputer and LED digital tube. The speed signal is acquired by photoelectric sensor, put into the Single-chip microcomputer processed after processed by signal processing circuit, and displayed the value in the digital tubes. The temperature signal is acquired by digital sensor, and the Single-chip microcomputer can read the data directly. Through two independent keyboards, the test system realized the data acquisition and data switch displaying of the multiple parameters.


2011 ◽  
Vol 138-139 ◽  
pp. 962-966 ◽  
Author(s):  
Kai Liu ◽  
Li Xu

Experimental study on combustor outlet temperature field of heavy-duty gas turbine had been finished on high-pressure test system. Experimental results indicate: The OTDF is sensitive to diameter of dilution holes, and the RTDF is sensitive to location of dilution holes. The test results have important guiding significance and reference value to design, commission and working about the similar combustor.


Sign in / Sign up

Export Citation Format

Share Document