A Study of Single-Objective Particle Swarm Optimization and Multi-Objective Particle Swarm Optimization

2014 ◽  
Vol 543-547 ◽  
pp. 1635-1638 ◽  
Author(s):  
Ming Li Song

The complexity of optimization problems encountered in various modeling algorithms makes a selection of a proper optimization vehicle crucial. Developments in particle swarm algorithm since its origin along with its benefits and drawbacks are mainly discussed as particle swarm optimization provides a simple realization mechanism and high convergence speed. We discuss several developments for single-objective case problem and multi-objective case problem.

2010 ◽  
Vol 18 (1) ◽  
pp. 127-156 ◽  
Author(s):  
Ahmed Elhossini ◽  
Shawki Areibi ◽  
Robert Dony

This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.


Author(s):  
Amir Nejat ◽  
Pooya Mirzabeygi ◽  
Masoud Shariat-Panahi

In this paper, a new robust optimization technique with the ability of solving single and multi-objective constrained design optimization problems in aerodynamics is presented. This new technique is an improved Territorial Particle Swarm Optimization (TPSO) algorithm in which diversity is actively preserved by avoiding overcrowded clusters of particles and encouraging broader exploration. Adaptively varying “territories” are formed around promising individuals to prevent many of the lesser individuals from premature clustering and encouraged them to explore new neighborhoods based on a hybrid self-social metric. Also, a new social interaction scheme is introduced which guided particles towards the weighted average of their “elite” neighbors’ best found positions instead of their own personal bests which in turn helps the particles to exploit the candidate local optima more effectively. The TPSO algorithm is developed to take into account multiple objective functions using a Pareto-Based approach. The non-dominated solutions found by swarm are stored in an external archive and nearest neighbor density estimator method is used to select a leader for the individual particles in the swarm. Efficiency and robustness of the proposed algorithm is demonstrated using multiple traditional and newly-composed optimization benchmark functions and aerodynamic design problems. In final airfoil design obtained from the Multi Objective Territorial Particle Swarm Optimization algorithm, separation point is delayed to make the airfoil less susceptible to stall in high angle of attack conditions. The optimized airfoil also reveals an evident improvement over the test case airfoil across all objective functions presented.


Author(s):  
Konstantinos E. Parsopoulos ◽  
Michael N. Vrahatis

The multiple criteria nature of most real world problems has boosted research on multi-objective algorithms that can tackle such problems effectively, with the smallest possible computational burden. Particle Swarm Optimization has attracted the interest of researchers due to its simplicity, effectiveness and efficiency in solving numerous single-objective optimization problems. Up-to-date, there are a significant number of multi-objective Particle Swarm Optimization approaches and applications reported in the literature. This chapter aims at providing a review and discussion of the most established results on this field, as well as exposing the most active research topics that can give initiative for future research.


2021 ◽  
Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>


Author(s):  
Mohammad Reza Farmani ◽  
Jafar Roshanian ◽  
Meisam Babaie ◽  
Parviz M Zadeh

This article focuses on the efficient multi-objective particle swarm optimization algorithm to solve multidisciplinary design optimization problems. The objective is to extend the formulation of collaborative optimization which has been widely used to solve single-objective optimization problems. To examine the proposed structure, racecar design problem is taken as an example of application for three objective functions. In addition, a fuzzy decision maker is applied to select the best solution along the pareto front based on the defined criteria. The results are compared to the traditional optimization, and collaborative optimization formulations that do not use multi-objective particle swarm optimization. It is shown that the integration of multi-objective particle swarm optimization into collaborative optimization provides an efficient framework for design and analysis of hierarchical multidisciplinary design optimization problems.


Author(s):  
Sotirios K. Goudos ◽  
Zaharias D. Zaharis ◽  
Konstantinos B. Baltzis

Particle Swarm Optimization (PSO) is an evolutionary optimization algorithm inspired by the social behavior of birds flocking and fish schooling. Numerous PSO variants have been proposed in the literature for addressing different problem types. In this chapter, the authors apply different PSO variants to common antenna and microwave design problems. The Inertia Weight PSO (IWPSO), the Constriction Factor PSO (CFPSO), and the Comprehensive Learning Particle Swarm Optimization (CLPSO) algorithms are applied to real-valued optimization problems. Correspondingly, discrete PSO optimizers such as the binary PSO (binPSO) and the Boolean PSO with velocity mutation (BPSO-vm) are used to solve discrete-valued optimization problems. In case of a multi-objective optimization problem, the authors apply two multi-objective PSO variants. Namely, these are the Multi-Objective PSO (MOPSO) and the Multi-Objective PSO with Fitness Sharing (MOPSO-fs) algorithms. The design examples presented here include microwave absorber design, linear array synthesis, patch antenna design, and dual-band base station antenna optimization. The conclusion and a discussion on future trends complete the chapter.


2018 ◽  
Vol 9 (4) ◽  
pp. 71-96 ◽  
Author(s):  
Swapnil Prakash Kapse ◽  
Shankar Krishnapillai

This article demonstrates the implementation of a novel local search approach based on Utopia point guided search, thus improving the exploration ability of multi- objective Particle Swarm Optimization. This strategy searches for best particles based on the criteria of seeking solutions closer to the Utopia point, thus improving the convergence to the Pareto-optimal front. The elite non-dominated selected particles are stored in an archive and updated at every iteration based on least crowding distance criteria. The leader is chosen among the candidates in the archive using the same guided search. From the simulation results based on many benchmark tests, the new algorithm gives better convergence and diversity when compared to existing several algorithms such as NSGA-II, CMOPSO, SMPSO, PSNS, DE+MOPSO and AMALGAM. Finally, the proposed algorithm is used to solve mechanical design based multi-objective optimization problems from the literature, where it shows the same advantages.


Sign in / Sign up

Export Citation Format

Share Document