The Design and Development of the Aerodynamic Engineering Prediction Software for Aircrafts

2014 ◽  
Vol 543-547 ◽  
pp. 3136-3140
Author(s):  
Di Liang ◽  
Sheng Jing Tang

Aerodynamic analysis and calculation are very important parts in the aircraft design, and aerodynamic engineering prediction is widely used in the aircraft preliminary design stage. However, traditional aerodynamic engineering prediction causes heavy computation and is time-consuming. The developed software such as DATCOM has the disadvantages of complicated operation and black box structure. To overcome the disadvantages above, we develop the software for aerodynamic engineering prediction based on the aerodynamic characteristics and prediction for aircrafts. There are three parts in this software which are database, calculation module and user interface. The software is verified by a numerical example of one aircraft, and compares with the data of Computational Fluid Dynamics (CFD) and the wind tunnel test. The results show that the calculated results of the aerodynamic engineering prediction and CFD are basically consistent, and the software is able to meet the accuracy demand in the preliminary design phase of the aircraft.

Author(s):  
Giacomo Frulla

Aircraft preliminary design requires a lot of complex evaluations and assumptions related to design variables that are not completely known at a very initial stage. Didactical activity becomes unclear since students ask for precise values in the starting point. A tentative in providing a simple tool for wing weight estimation is presented for overcoming these common difficulties and explaining the following points: a) the intrinsic iterative nature of the preliminary design stage, b) provide useful and realistic calculation for the wing weight with very simple assumption not covered by cumbersome calculations and formulas. The purpose of the paper is to provide a didactic tool to facilitate the understanding of some steps in estimating wing weight at the preliminary design level. The problems of identifying the main variables for the initial estimation is dealt with and specifi aspects that are usually hidden by the complexity of the involved disciplines and by the usual calculation methods applied in structural design are pointed out. The procedure is addressed to highlight main steps in wing weight estimation for straight wing weight to highlight the main steps in estimating the wing weight for a general aviation straight wing aircraft at the preliminary design stage. The effect of the main variables on the wing weight variation is also presented confirming well-known results from literature and design manuals.


CFD letters ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 19-32
Author(s):  
Ahmad Fitriadhy ◽  
Syarifuddin Dewa ◽  
Nurul Aqilah Mansor ◽  
Nur Amira Adam ◽  
Ng Cheng Yee ◽  
...  

The numerous ship accidents at sea have usually resulted in tremendous loss and casualties. To prevent such disastrous accidents, a comprehensive investigation into reliable prediction of seakeeping performance of a ship is necessarily required. This paper presents computational fluid dynamics (CFD) analysis on seakeeping performance of a training ship (full scale model) quantified through a Response of Amplitude Operators (RAO) for heave and pitch motions. The effects of wavelengths, wave directions and ship forward velocities have been accordingly taken into account. In general, the results revealed that the shorter wavelengths (l/L ? 1.0) have insignificant effect to the heave and pitch motions performance of the training ship, which means that the ship has good seakeeping behavior. However, the further increase of wavelength was proportional with the increase of RAO for her heave and pitch motions; whilst it may lead to degrade her seakeeping quality. In addition, the vertical motions behavior in the following-seas dealt with higher RAO as compared with case of the head-seas condition. Similarly, the subsequent increase of the ship forward velocity was prone to relatively increase of the RAO for her heave and pitch motions especially at l/L ? 2.0. It was merely concluded that this seakeeping prediction using CFD approach provides useful outcomes in the preliminary design stage for safety assessment of the training ship navigation during sailing.


Author(s):  
Giacomo Frulla

Aircraft preliminary design requires a lot of complex evaluations and assumptions related to design variables that are not completely known at a very initial stage. Didactical activity becomes unclear since students ask for precise values in the starting point. A tentative in providing a simple tool for wing weight estimation is presented devoted to overcome these common difficulties and clarifies the following points: a) the intrinsic iterative nature of the preliminary design stage, b) provide useful and realistic calculation for the wing weight with very simple assumption not covered by cumbersome calculations and formulas. The procedure is applied to the calculation of wing weight for a typical general aviation aircraft in the preliminary design stage. The effect of the main variables on the wing weight variation is also presented confirming well-known results from literature and design manuals.


Author(s):  
Dominik B. Schwinn

The design process of new air- and rotorcraft is commonly separated into three different consecutive phases. In the conceptual design phase, the viability of different designs is investigated with respect to customer requirements and/or the market situation. It usually ends with the identification of a basic aircraft lay-out. In the subsequent preliminary design stage the various disciplines are introduced, thus redefining the design process as a multidisciplinary optimization (MDO) task. The objective of this design stage is to enhance the initial aircraft configuration by establishing an advanced design comprising a loft provided with primary structure. This updated aircraft configuration represents a global optimum solution for the specified requirements which will then be optimized on a local level in the concluding detailed design phase with particular regard to manufacturing aspects. The investigations in the preliminary design phase comprise the generation of numerous similar but still different analytical and finite element (FE) models. Even though computational power is constantly increasing the model generation process is still a time-consuming task. Moreover, it is also a potential source of errors which — in the worst case — may lead to time- and cost-intensive redesign activities during the detailed design. As the preliminary design stage, therefore, is of particular importance during the overall design process the model generation process benefits from parametric models and automated process chains. The presented paper overviews the tools used for the automated generation of FE models developed and used at the Institute of Structures and Design (BT) of the German Aerospace Center (DLR) for the subsequent use in numerical simulations. Furthermore, basic requirements for the effective use of parametrization and automation like a common data format and infrastructure will be introduced. Exemplary models and applications will be presented to illustrate the positive impact on efficiency in aircraft design. Concluding, future development steps and possible applications will be discussed.


2016 ◽  
Vol 19 (3) ◽  
pp. 43-52
Author(s):  
Bao Anh Dinh ◽  
Hieu Khanh Ngo ◽  
Van Nhu Nguyen

This paper proposes an efficient low-speed airfoil selection and design optimization process using multi-fidelity analysis for a long endurance Unmanned Aerial Vehicle (UAV) flying wing. The developed process includes the low speed airfoil database construction, airfoil selection and design optimization steps based on the given design requirements. The multi-fidelity analysis solvers including the panel method and computational fluid dynamics (CFD) are presented to analyze the low speed airfoil aerodynamic characteristics accurately and perform inverse airfoil design optimization effectively without any noticeable turnaround time in the early aircraft design stage. The unconventional flying wing UAV design shows poor reaction in longitudinal stability. However, It has low parasite drag, long endurance, and better performance. The multi-fidelity analysis solvers are validated for the E387 and CAL2463m airfoil compared to the wind tunnel test data. Then, 29 low speed airfoils for flying wing UAV are constructed by using the multi-fidelity solvers. The weighting score method is used to select the appropriate airfoil for the given design requirements. The selected airfoil is used as a baseline for the inverse airfoil design optimization step to refine and obtain the optimal airfoil configuration. The implementation of proposed method is applied for the real flying-wing UAV airfoil design case to demonstrate the effectiveness and feasibility of the proposed method.


Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 395-405
Author(s):  
Arsalan Alavi ◽  
Elena Mele ◽  
Reza Rahgozar ◽  
Ehsan Noroozinejad Farsangi ◽  
Izuru Takewaki ◽  
...  

1999 ◽  
Vol 36 (03) ◽  
pp. 171-174
Author(s):  
Hüseyin Yilmaz ◽  
Abdi Kükner

It is well known that stability is the most important safety requirement for ships. One should have some information on ship stability at the preliminary design stage in order to reduce risk. Initial stability of ships is an important criterion and can be closely evaluated in terms of form parameters and vertical center of gravity. In this study, using some sample ship data, approximate formulations are derived by means of regression analysis for the calculations expressed in terms of ship preliminary design parameters that can easily provide approximate GM calculations. Thus designers can be provided with ship stability at the preliminary design stage, and also a set of appropriate design parameters for improving vessel stability can easily be determined.


2021 ◽  
Author(s):  
Sacheen Bekah

This thesis presents the use of Finite Element (FE) based fatigue analysis to locate the critical point of crack initiation and predict life in a door hinge system that is subjected to both uni-axial and multi-axial loading. The results are experimentally validated. The FE model is further used to obtain an optimum design per the standard requirement in the ground vehicle industry. The accuracy of the results showed that FE based fatigue analysis can be successfully employed to reduce costly and time-consuming experiments in the preliminary design stage. Numerical analysis also provides the product design engineers with substantial savings, enabling the testing of fewer prototypes.


2021 ◽  
Author(s):  
Sacheen Bekah

This thesis presents the use of Finite Element (FE) based fatigue analysis to locate the critical point of crack initiation and predict life in a door hinge system that is subjected to both uni-axial and multi-axial loading. The results are experimentally validated. The FE model is further used to obtain an optimum design per the standard requirement in the ground vehicle industry. The accuracy of the results showed that FE based fatigue analysis can be successfully employed to reduce costly and time-consuming experiments in the preliminary design stage. Numerical analysis also provides the product design engineers with substantial savings, enabling the testing of fewer prototypes.


Sign in / Sign up

Export Citation Format

Share Document