scholarly journals Modelling of Guided Wave Propagation with Spectral Element: Application in Structural Engineering

2014 ◽  
Vol 553 ◽  
pp. 687-692 ◽  
Author(s):  
Ying Wang ◽  
Hong Hao

Among many structural health monitoring (SHM) methods, guided wave (GW) based method has been found as an effective and efficient way to detect incipient damages. In comparison with other widely used SHM methods, it can propagate in a relatively long range and be sensitive to small damages. Proper use of this technique requires good knowledge of the effects of damage on the wave characteristics. This needs accurate and computationally efficient modeling of guide wave propagation in structures. A number of different numerical computational techniques have been developed for the analysis of wave propagation in a structure. Among them, Spectral Element Method (SEM) has been proposed as an efficient simulation technique. This paper will focus on the application of GW method and SEM in structural health monitoring. The GW experiments on several typical structures will be introduced first. Then, the modeling techniques by using SEM are discussed.

2016 ◽  
Vol 90 ◽  
pp. 787-794 ◽  
Author(s):  
Mohammad H. Sherafat ◽  
Robin Guitel ◽  
Nicolas Quaegebeur ◽  
Pascal Hubert ◽  
Larry Lessard ◽  
...  

2019 ◽  
Vol 9 (21) ◽  
pp. 4600 ◽  
Author(s):  
Yevgeniya Lugovtsova ◽  
Jannis Bulling ◽  
Christian Boller ◽  
Jens Prager

Guided waves (GW) are of great interest for non-destructive testing (NDT) and structural health monitoring (SHM) of engineering structures such as for oil and gas pipelines, rails, aircraft components, adhesive bonds and possibly much more. Development of a technique based on GWs requires careful understanding obtained through modelling and analysis of wave propagation and mode-damage interaction due to the dispersion and multimodal character of GWs. The Scaled Boundary Finite Element Method (SBFEM) is a suitable numerical approach for this purpose allowing calculation of dispersion curves, mode shapes and GW propagation analysis. In this article, the SBFEM is used to analyse wave propagation in a plate consisting of an isotropic aluminium layer bonded as a hybrid to an anisotropic carbon fibre reinforced plastics layer. This hybrid composite corresponds to one of those considered in a Type III composite pressure vessel used for storing gases, e.g., hydrogen in automotive and aerospace applications. The results show that most of the wave energy can be concentrated in a certain layer depending on the mode used, and by that damage present in this layer can be detected. The results obtained help to understand the wave propagation in multi-layered structures and are important for further development of NDT and SHM for engineering structures consisting of multiple layers.


2012 ◽  
Vol 570 ◽  
pp. 79-86 ◽  
Author(s):  
Hu Sun ◽  
Li Zhou

Structural health monitoring based on Lamb wave attracts great attention in large-span structures. Lamb wave propagation in complex structures is very complicated due to multiple reflection and mode conversion at geometrical and material features. For effectively inspecting structural integrity, numerical simulation is employed to for extract damage features. It is essential to develop fast and low-cost simulating methods to study Lamb wave propagation in damaged structures. Spectral element method (SEM) is one of the most attractive methods, which is employed to study wave propagation in damaged structures. A massless spring, coupling the longitudinal and rotational vibration, is proposed to model a transverse crack and analyze wave propagation in a composite cracked beam based on SEM. Cracked spectral element formulation is derived by modeling the crack as the spring, whose stiffness is obtained from laws of fracture mechanics. Due to asymmetry of the crack, extensional and flexural wave modes are reflected and transmitted from an incident flexural wave mode. The proposed model is verified by comparing with conventional finite element analysis. Power reflection and transmission varying with the crack depth is also calculated. The results indicate that power reflection/transmission ratio of a single mode is monotonic, which may provide some quantitative foundations for structural health monitoring.


2015 ◽  
Vol 67 (1) ◽  
Author(s):  
C. Willberg ◽  
S. Duczek ◽  
J. M. Vivar-Perez ◽  
Z. A. B. Ahmad

This paper reviews the state-of-the-art in numerical wave propagation analysis. The main focus in that regard is on guided wave-based structural health monitoring (SHM) applications. A brief introduction to SHM and SHM-related problems is given, and various numerical methods are then discussed and assessed with respect to their capability of simulating guided wave propagation phenomena. A detailed evaluation of the following methods is compiled: (i) analytical methods, (ii) semi-analytical methods, (iii) the local interaction simulation approach (LISA), (iv) finite element methods (FEMs), and (v) miscellaneous methods such as mass–spring lattice models (MSLMs), boundary element methods (BEMs), and fictitious domain methods. In the framework of the FEM, both time and frequency domain approaches are covered, and the advantages of using high order shape functions are also examined.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wang Ziping ◽  
Xiong Xiqiang ◽  
Qian Lei ◽  
Wang Jiatao ◽  
Fei Yue ◽  
...  

In the application of Structural Health Monitoring (SHM) methods and related technologies, the transducer used for electroacoustic conversion has gradually become a key component of SHM systems because of its unique function of transmitting structural safety information. By comparing and analyzing the health and safety of large-scale structures, the related theories and methods of Structural Health Monitoring (SHM) based on ultrasonic guided waves are studied. The key technologies and research status of the interdigital guided wave transducer arrays which used for structural damage detection are introduced. The application fields of interdigital transducers are summarized. The key technical and scientific problems solved by IDT for Structural Damage Monitoring (SHM) are presented. Finally, the development of IDT technology and this research project are summarised.


Sign in / Sign up

Export Citation Format

Share Document