Application of FEM Strength Reduction Dynamic Analysis in the Seismic Design of Reinforced Earth-Retaining Wall with Geo-Grid

2014 ◽  
Vol 580-583 ◽  
pp. 1419-1425
Author(s):  
Xiao Song Tang ◽  
Ying Ren Zheng ◽  
Lai Jie

Due to the special mesh structure, geo-grid material can avoid local subsidence of filling material, reduce uneven settlement of soil mass to the largest degree and improve the whole stability of soil mass, so the reinforced earth-retaining wall with geo-grid is widely used in engineering. Meanwhile, researches on its dynamic characters are not enough and it is hard to judge the whole stability of reinforced earth-retaining wall under seismic condition. When unstable failure happens, the location of failure surface can hardly be identified. These disadvantages have seriously limited the development of this supporting method and cause unsafe potentials for engineering. Based on the FEM strength reduction dynamic analysis and combined with practical engineering, the paper conducts stability analysis on the reinforced earth-retaining wall of geo-grid under seismic condition and the research achievements provide a new thinking for the seismic design of reinforced earth-retaining wall with geo-grid.

2008 ◽  
Vol 45 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Priyanka Ghosh

This note describes a study on the seismic active earth pressure behind a nonvertical cantilever retaining wall using pseudo-dynamic analysis. A planar failure surface has been considered behind the retaining wall. The effects of soil friction angle, wall inclination, wall friction angle, amplification of vibration, and horizontal and vertical earthquake acceleration on the active earth pressure have been explored in this study. Unlike the Mononobe–Okabe method, which incorporates pseudo-static analysis, the present analysis predicts a nonlinear variation of active earth pressure along the wall. The results have been compared with the existing values in the literature.


2013 ◽  
Vol 353-356 ◽  
pp. 2073-2078
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu ◽  
Chun Jing Lai ◽  
De Ju Meng

Slope anchorage structure of soil nail is a kind of economic and effective flexible slope supporting structure. This structure at present is widely used in China. The supporting structure belong to permanent slope anchorage structure, so the design must consider earthquake action. Its methods of dynamical analysis and seismic design can not be found for the time being. The seismic design theory and method of traditional rigidity retaining wall have not competent for this new type of flexible supporting structure analysis and design. Because the acceleration along the slope height has amplification effect under horizontal earthquake action, errors should be induced in calculating earthquake earth pressure using the constant acceleration along the slope height. Considering the linear change of the acceleration along the slope height and unstable soil with the fortification intensity the influence of the peak acceleration, the earthquake earth pressure calculation formula is deduced. The soil nailing slope anchorage structure seismic dynamic calculation model is established and the analytical solutions are obtained. The seismic design and calculation method are given. Finally this method is applied to a case record for illustration of its capability. The results show that soil nailing slope anchorage structure has good aseismic performance, the calculation method of soil nailing slope anchorage structure seismic design is simple, practical, effective. The calculation model provides theory basis for the soil nailing slope anchorage structure of seismic design. Key words: soil nailing; slope; earthquake action; seismic design;


2018 ◽  
Vol 7 (3.10) ◽  
pp. 50
Author(s):  
T Subramani ◽  
E Narendra Kumar

Retaining systems are widely used international for serving numerous functions in structures and infrastructures. The seismic response of forms of walls that assist a single soil layer has been examined with the aid of some of researchers in the past. The design of preserving partitions in seismic areas poses a complex problem. The conventional layout method usually contains calculation of an element of safety in opposition to sliding, overturning and bearing ability failure. Retaining partitions have suffered damages under beyond earthquakes. Typically the analyses do not bear in mind the retained soil’s interplay with the wall, which takes location at some point of dynamic conditions. The situations of separation of wall (at some point of interactions) over again trade the dynamic traits of the assumed wall-soil interplay that needs to be addressed. Our study conducts the retaining wall beneath static in addition to seismic situations about above components.  


Sign in / Sign up

Export Citation Format

Share Document