Nonlinear Finite Element Analysis for the Flexural Behavior of Concrete Beams Strengthened with NSM CFRP-PCPs Composite Bars

2014 ◽  
Vol 584-586 ◽  
pp. 925-928
Author(s):  
Jiong Feng Liang ◽  
Ze Ping Yang ◽  
Ping Hua Yi ◽  
Jian Bao Wang

This paper presents the development of a detailed 3D nonlinear finite element (FE) numerical model that can accurately predict the load-carrying capacity and response of RC beams strengthened with NSM CFRP-PCPs composite bars subjected to four-point bending loading. The predicted FE mid-span deflection responses agreed very well with the corresponding measured experimental tested data at all stages of flexural loading.

2013 ◽  
Vol 368-370 ◽  
pp. 953-956
Author(s):  
Jiong Feng Liang ◽  
Ze Ping Yang ◽  
Ping Hua Yi ◽  
Zhi Ming Qiu

The nonlinear finite element analysis for the flexural behavior of the concrete beams reinforced with CFRP-PCPs Composite Rebars,which was a new structural form, has been studied in ANSYS. The effects of material nonlinearities of concrete £¬steel rebar £¬CFRP rebar were considered in the analytic model. Load-displacement curves were received through calculation in this paper. Compared the present result with the experimental results has proved that the model provided is correct and convenient for the analysis of the beams.


2011 ◽  
Vol 287-290 ◽  
pp. 1130-1134
Author(s):  
Hong Chang Qu ◽  
Chang Qing Wu ◽  
Ling Ling Chen

In this paper, different types of debonding failure modes are described. Study of concrete cracking behavior and interfacial debonding fracture in fiber reinforced polymer (FRP)-strengthened concrete beams are carried out. A finite element analysis is performed to investigate the different types of debonding propagation along FRP–concrete interface and crack distribution in concrete. The proposed FE, denoted as FRP–FB (force-based) beam, is used to predict the load-carrying capacity and the applied load-midspan deflection response of RC beams subjected to four-point bending loading. Numerical simulations and experimental measurements are compared based on numerous tests available in the literatures and published by different authors. The numerically simulated responses agree remarkably well with the corresponding experimental results. It demonstrates that the proposed two-dimensional frame finite element (FE) is able to accurately estimate the load-carrying capacity of reinforced concrete (RC) beams flexurally strengthened with externally bonded fibre reinforced polymer (FRP) strips and plates.


2021 ◽  
Vol 16 ◽  
pp. 155892502110203
Author(s):  
Mohammad Iqbal Khan ◽  
Galal Fares ◽  
Yassir Mohammed Abbas ◽  
Wasim Abbass ◽  
Sardar Umer Sial

Strain-hardening cement-based composites (SHCC) have recently been developed as repair materials for the improvement of crack control and strength of flexural members. This work focuses on strengthening and flexural enhancement using SHCC layer in tensile regions of flexural members under three different curing conditions. The curing conditions simulate the effect of different environmental conditions prevailing in the central and coastal regions of the Arabian Peninsula on the properties of SHCC as a retrofitting material. In this investigation, beams with SHCC layer were compared to control beams. The beams with SHCC layer of 50-mm thickness were cast. The results revealed that the flexural behavior and the load-carrying capacity of the normal concrete beam specimens under hot and dry environmental conditions were significantly reduced, lowering the ductility of the section. However, compressive strength is comparatively unaffected. Similarly, the hot curing conditions have also led to a notable reduction in the loading capacity of the beam with SHCC layer with a slight effect on its stiffness. On the other hand, steam-curing conditions have shown improvement in load-carrying capacity and a reduction in section ductility of the beam with SHCC layer. It was found that the structural unit retrofitted with SHCC layer was a curing-regime dependent as the tensile and strain-hardening properties of SHCC are highly sensitive to the alteration in the cement hydration process. A normal curing regime was found effective and satisfying the practical, cost, and performance requirements. Accordingly, a normal curing regime could be implemented to retrofit reinforced concrete (RC) beams with SHCC layers as recommended in the study.


2011 ◽  
Vol 199-200 ◽  
pp. 749-753
Author(s):  
Xiao Bo Zuo ◽  
Jian Min Wang ◽  
Chao Liang Guan ◽  
Juan Li

The static performance of an aerostatic bearing with angled surface self-slot-compensation is analyzed. The consistent condition was applied to unitize the Reynolds equation of different forms and the finite element method (FEM) was used to solve the equation. The load carrying capacity (LCC) and the stiffness of the bearing was obtained and the influence of the geometric parameters was discussed. It is concluded that this self-compensating aerostatic bearing can achieve a good performance; the geometric parameters of the gap are interactive, and should be rationally matched.


2011 ◽  
Vol 368-373 ◽  
pp. 1038-1041
Author(s):  
An Hong Bao ◽  
Zhen Yu Qiu ◽  
Peng Wang

Debonding of concrete occurs when the interface principal stress reaches the ultimate tensile strength. We propose the use of carbon fiber plate attached to the beam bottom, which makes finite element analysis of the mechanical properties of debonding concrete beams more reasonable. In addition, formulas of this theory are given and applied in the finite element analysis. Finally, it is shown by a number of experimental results.


Sign in / Sign up

Export Citation Format

Share Document