Finite Element Analysis of the Static Performance of a Self-Slot-Compensating Aerostatic Bearing

2011 ◽  
Vol 199-200 ◽  
pp. 749-753
Author(s):  
Xiao Bo Zuo ◽  
Jian Min Wang ◽  
Chao Liang Guan ◽  
Juan Li

The static performance of an aerostatic bearing with angled surface self-slot-compensation is analyzed. The consistent condition was applied to unitize the Reynolds equation of different forms and the finite element method (FEM) was used to solve the equation. The load carrying capacity (LCC) and the stiffness of the bearing was obtained and the influence of the geometric parameters was discussed. It is concluded that this self-compensating aerostatic bearing can achieve a good performance; the geometric parameters of the gap are interactive, and should be rationally matched.

2012 ◽  
Vol 557-559 ◽  
pp. 1308-1312
Author(s):  
Jia Jie Wang ◽  
Zhi Bo Dong ◽  
Jing Qiang Zhang ◽  
Jian Guo Yang ◽  
Xue Song Liu ◽  
...  

In this paper, cold bending properties of Q620-CF steel butt joints were analyzed based on the finite element method. Finite element analysis (FEA) results indicate that the flush under-matched butt joints have lower bending properties than the flush equal-matched butt joints, but under-matched butt joints with definite reinforcement shape can get greater bending force and better cold bending angles than the flush equal-matched butt joints. It shows that shape design of the reinforcement can improve the bending load-carrying capacity of under-matched joints. The reliability of the FEA has been verified by the experiment.


2020 ◽  
Vol 299 ◽  
pp. 1184-1189
Author(s):  
V.V. Zhukov ◽  
Anton V. Eremin ◽  
D.V. Stepanec

In this article, the object of study is a three–layer honeycomb panel with fixing elements (FE), which are used for transporting the panel, and fixing it to the spacecraft. The goal of the work is to determine experimentally the load carrying capacity of the fixing elements under various types of loading, to determine the load carrying capacity of the honeycomb panel of the spacecraft at fixing points and further comparison of the experimental results with the finite element method results calculated by MSC.Patran / Nastran. A method for conducting static tests of fixing elements of a spacecraft honeycomb panel under an external load is described, a description of computer technology of a finite–element solution to the problem of static strength of a honeycomb panel structure in the MSC.Patran environment is presented, and a finite–element model of a honeycomb panel is designed. An assessment of the strength of a three–layer structure at fixing points was carried out, followed by validation of the finite–element model of a honeycomb panel. On the basis of the validated model, the evaluation of the strength of the honeycomb structure was carried out; based on results obtained, the conclusion has been made about the convergence of the results by the finite element method with the results obtained during the experiment.


Tribologia ◽  
2018 ◽  
Vol 273 (3) ◽  
pp. 15-66 ◽  
Author(s):  
Rafał GAWARKIEWICZ

Computer simulations of a number of journal bearing’s geometries utilising acoustic levitation were carried out. The choice of the best geometry depended on the ability of a deformed shape, created by piezo-electric elements, to facilitate squeeze film ultrasonic levitation, and also to create three evenly distributed diverging aerodynamic gaps. Deformations of analysed variants of the bearing’s shape were generated by numerical simulations utilising the finite element method. For the chosen shapes of geometry, prototype bearings were made and their usefulness verified experimentally. As a result, the bearing with the highest load carrying capacity was identified.


1998 ◽  
Vol 25 (3) ◽  
pp. 585-594 ◽  
Author(s):  
Murray C Temple ◽  
Sherief SS Sakla

Single-angle compression members are complex members to analyze and design. The two generally accepted design procedures, the simple-column and the beam-column approaches, in general, underestimate the load-carrying capacity of single-angle compression members welded by one leg to a gusset plate fixed to a rigid support. One of the reasons is that these approaches do not properly account for the end constraint provided by the gusset plate. The effective length factor can be adjusted, but this is difficult to do as the end restraint is not easy to evaluate in many practical cases. Another reason is that these approaches are not based on a rational understanding of the failure mechanism of these members. An experimental program confirmed that the finite element method can be used, with a reasonable degree of accuracy, to predict the behavior and load-carrying capacity of single-angle compression members welded by one leg to a gusset plate fixed to a rigid support. The finite element method was used to study some 1800 different combinations of parameters. It was found that out-of-straightness, residual stresses in the angle section, Young's modulus of elasticity, and the unconnected gusset plate length do not have a great effect on the load-carrying capacity. The most significant parameter is the gusset plate thickness with the gusset plate width being the second most important parameter. An empirical design equation is proposed.Key words: angles, buckling, columns (structural), compressive resistance, design equation, gusset plates.


Author(s):  
Yogesh K S

Pile foundation is one of the effective forms of deep foundation. This is to be used where the load has to be transferred to deeper layers of soil and it can with stand uplift forces in foundations in expansive soil and also in case of floating foundations. The finite element method is one of the most versatile and comprehensive numerical technique which can be used for analysis of structures or solids of complex shapes and complicated boundary conditions. There are different variables which influence the load carrying capacity of pile foundation. But only some of those have significant influence on load carrying capacity. Here those variables are considered and the variation of load carrying capacity with the change in value of those variables is observed. Those variables are pile length and pile diameter, analysis of pile foundation was carried out to determine the ultimate load carrying capacity of pile for different lengths and diameters in cohesive soil, the corresponding settlement was also determined.


Author(s):  
Rakesh Pokkula ◽  
T.V.K. Gupta

The requirement of increased turn around time and higher pay-load carrying capacity, weight reduction of components and systems is having much attention in railway industry. The present paper discusses about the Finite Element Analysis (FEA) carried out using ANSYS workbench on the modified design of a bolster in light weight freight bogies. The reduction in weight transforms into higher performance leading to lower power consumption. With this present study, although the modified bolster has not undergone any significant weight reduction, but the modifications in design has lead to increase in stiffeness and reduction in stresses generated for various loading conditions. Presently, bolsters fitted with wagons in Indian Railways are in operational for 20.32t to 22.9t axle load capacities for a variety of applications. The existing and modified bolsters are analysed in static conditions for different loads which includes a vertical load on centre plate, transverse loading and side bearing loading and a comparison has been made. The results on the modified bolster has shown 11% higher bending stiffness in vertical direction at the centre and 9% higher stiffness in tranverse direction as compared to the existing bolster.


Author(s):  
Michael Bach ◽  
Xin Wang ◽  
Robert Bell

In this paper, the fracture behaviour of hollow cylinders with internal circumferential crack under tensile loading is examined extensively. Finite element analysis of the cracked cylinders is conducted to determine the fracture parameters including stress intensity factor, T-stress, and J-integral. Linear elastic finite element analysis is conducted to obtain K and T-stress, and elastic plastic analysis is conducted to obtain fully plastic J-integrals. A wide range of cylinder geometries are studied, with cylinder thickness ratios of ri/ro = 0.2 to 0.8 and crack depth ratio a/t = 0.2 to 0.8. These fracture parameters are then used to construct conventional and constraint-based failure assessment diagrams (FADs) to determine the maximum load carrying capacity of cracked cylinders. It is demonstrated that these tensile loaded cylinders with circumferential cracks are under low constraint conditions, and the load carrying capacity are higher when the low constraint effects are properly accounted for, using constraint-based FADs, comparing to the predictions from the conventional FADs.


2013 ◽  
Vol 8-9 ◽  
pp. 343-352
Author(s):  
Ionut Ovidiu Toma ◽  
Daniel Covatariu ◽  
Irina Lungu ◽  
Mihai Budescu

Numerical simulations based on the Finite Element Method (FEM) have become an important tool in studying various phenomena of interest to both researchers and practitioners alike. The recent advances in computational power coupled with accurate mathematical models have made FEM an indispensable tool for investigating complex loading states and material behavior that are frequently met in civil engineering. Strengthening of existing RC columns is becoming a pressing issue in the field of civil engineering due to the necessity of meeting new safety requirements for the buildings located in active seismic areas. Jacketing is a widely used method for strengthening of reinforced concrete columns showing good results in terms of increased strength and stiffness but with the addition of some unwanted effects amongst which the added dead weight is of primary importance in case of an earthquake. The paper presents the results obtained by means of Finite Element Analysis (FEA) on the load carrying capacity of short RC columns strengthened with a novel Cementitious material that may be the solution to lighter structures and lower added costs compared to other existing methods.


Author(s):  
Venkata M. K. Akula ◽  
Lance T. Hill

Induction pipe bends are essential multi-functional components in offshore applications performing not only as fluid conductors but also as structural members providing flexibility to the entire pipeline. The deforming mechanism of bends minimizes the effects of pipe walking, length changes due to thermal expansion/contraction, etc. However, the extent to which the bend deforms to counteract the pipeline deformation, prior to reaching plastic collapse, is dictated by the design variables. The pipe bend design variables include the geometry of the bend, the inelastic material properties, and the operating loads. The study of the influence of these variables is central to improving upon existing bend designs and is the focus of this research. The certification process for bends typically involves ensuring the pipe bending moment is within limits set by agencies such as DNV, ASME, etc. Closed form solutions for the bending moment do exist but they often do not consider the effects of large deformation and the material nonlinearity of the bends. Since it is impractical to perform physical tests for every possible design, numerical techniques such as the finite element methods are an attractive alternative. Furthermore, for a given bend design, the design variables are prone to deviation, due to manufacturing process, operating conditions, etc., which introduces variation in the structural response and the resulting bending moment. In this paper, a nonlinear finite element analysis of induction bends is discussed followed by a presentation of a simulation workflow and reliability analysis. The finite element analysis utilizes a nonlinear Abaqus model with an user-subroutine prescribing precise end loading and boundary conditions. The workflow utilizes the design exploration software, Isight, which automates the solution process. Thereafter, reliability analysis is performed by varying the design variables, such as bend angle, ovalization, etc. and the results of the simulation are presented. The objective is to illustrate a solution technique for predicting the induction bend load carrying capacity and to examine design robustness. An automated workflow is demonstrated which allows for quick design variable changes, there by potentially reducing design time. The reliability analysis allows analysts to measure the variation in the load carrying capacity resulting from the deviation of design variable specifications. These demonstrations are intended to emphasize that to ensure the success of a bend design, it is important to not only predict the load carrying capacity accurately but also to perform reliability analysis for the design.


Sign in / Sign up

Export Citation Format

Share Document