The Research of Absorption Heat Pump Taking Basic Heat Load City Heat-Supply Network Heating Regulation Optimization

2014 ◽  
Vol 587-589 ◽  
pp. 325-329
Author(s):  
Hai Hong Yu ◽  
Qiao Li Cao ◽  
Ming Hui Cui ◽  
Xin Wang

This paper aiming at absorption heat pump maximizing annual heating quantity, with the goal of thermal power plant absorption heat pump heating earnings in different heating regulation mode, set up calculation model of absorption heat pump heating earnings, analysis heat-supply network backwater temperature fluctuations and heat pump heating quantity difference in different heating regulation mode, discuss optimization approach of absorption heat pump taking basic heat load city heat-supply network heating regulation, calculate heat pump heating earnings finally. The results showed that the pure quality regulation can get the best economic benefits of absorption heat pump.

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 226
Author(s):  
Milana Treshcheva ◽  
Irina Anikina ◽  
Vitaly Sergeev ◽  
Sergey Skulkin ◽  
Dmitry Treshchev

The percentage of heat pumps used in thermal power plants (TPPs) in the fuel and energy balance is extremely low in in most countries. One of the reasons for this is the lack of a systematic approach to selecting and justifying the circuit solutions and equipment capacity. This article aims to develop a new method of calculating the maximum capacity of heat pumps. The method proposed in the article has elements of marginal analysis. It takes into account the limitation of heat pump capacity by break-even operation at electric power market (compensation of fuel expenses, connected with electric power production). In this case, the heat pump’s maximum allowable capacity depends on the electric capacity of TPP, electricity consumption for own needs, specific consumption of conditional fuel for electricity production, a ratio of prices for energy resources, and a conversion factor of heat pump. For TPP based on combined cycle gas turbine (CCGT) CCGT-450 with prices at the Russian energy resources markets at the level of 2019, when operating with the maximum heat load, the allowable heat pump capacity will be about 50 MW, and when operating with the minimum heat load—about 200 MW.


2020 ◽  
Vol 10 (1) ◽  
pp. 323 ◽  
Author(s):  
Yi Yang ◽  
Zihua Wang ◽  
Qingya Ma ◽  
Yongquan Lai ◽  
Jiangfeng Wang ◽  
...  

In this paper, a novel combined heat and power (CHP) system is proposed in which the waste heat from a supercritical CO2 recompression Brayton cycle (sCO2) is recovered by a LiBr-H2O absorption heat pump (AHP). Thermodynamic and exergoeconomic models are established on the basis of the mass, energy, and cost balance equations. The proposed sCO2/LiBr-H2O AHP system is examined and compared with a stand-alone sCO2 system, a sCO2/DH system (sCO2/direct heating system), and a sCO2/ammonia-water AHP system from the viewpoints of energy, exergy, and exergoeconomics. Parametric studies are performed to reveal the influences of decision variables on the performances of these systems, and the particle swarm optimization (PSO) algorithm is utilized to optimize the system performances. Results show that the sCO2/LiBr-H2O AHP system can obtain an improvement of 13.39% in exergy efficiency and a reduction of 8.66% in total product unit cost compared with the stand-alone sCO2 system. In addition, the sCO2/LiBr-H2O AHP system performs better than sCO2/DH system and sCO2/ammonia-water AHP system do, indicating that the LiBr-H2O AHP is a preferable bottoming cycle for heat production. The detailed parametric analysis, optimization, and comparison results may provide some references in the design and operation of sCO2/AHP system to save energy consumption and provide considerable economic benefits.


2021 ◽  
Vol 13 (21) ◽  
pp. 11753
Author(s):  
Muhammad Abid ◽  
Neil Hewitt ◽  
Ming-Jun Huang ◽  
Christopher Wilson ◽  
Donal Cotter

Decarbonization of the UK residential heating sector is crucial to cut the carbon emissions and meet the legal binding of the Climate Change Act, 2008. The current progress with residential building sector carbon neutrality is slow and, hence, acceleration in action is required. The heat pump (HP) technology was found to be a potential candidate for sustainable development instead of fossil fuel-based oil/gas boilers, but improvement in its coefficient of performance (COP) is essential to compete with the lower gas/oil unit energy cost. The number of studies found in the literature were very limited, with the customized prototype development in the context of Northern Ireland, but without considering the simultaneous impact of heat supply temperature and operating mode of control for performance improvement in different property types. It is evidenced in the literature that the variable speed capacity control approach could improve the annual performance, but the literature has not looked into the compressor efficiencies challenges. In this study, steady state testing with a range of fixed constant heat loads (3–18 KW), done by varying compressor speed and its impact on COP, compressor efficiencies, and inverter losses, was established. The HP performance was measured and evaluated at low (35 °C)-to-medium (45 °C) and high (55 °C) heat supply temperature levels under the controlled laboratory conditions over the experienced ambient temperature. According to the result the COP values varies according to heat supply temperature, ambient temperature conditions, and heating capacity. The HP annual performances with Irish housing stock were evaluated in two modes of control and three case studies (C1, C2, C3) based on the experimentally validated model. The heat load demand in five property types with four age periods were considered in the analysis. The system could meet the required heat load demand for all property types in VSM with different percentage improvements in performance in comparison to FSM depending on the considered case level of the heat supply temperature (C1, C2, C3).


2013 ◽  
Vol 448-453 ◽  
pp. 2203-2207
Author(s):  
Shao Hua Li ◽  
Long Gao ◽  
De Yong Che ◽  
Jing Lv ◽  
Zhang Bai

Condensation heat of turbine exhaust steam is not only failed to use reasonable and effective in traditional thermal power plant, but also had a huge negative impact on the environment in the form of thermal pollution. This paper has a comparative analysis in condensation heat recovery technology programs of turbine exhaust steam, which is taken a certain 200MW CHP unit as the application object. Simulation and optimization analysis of the absorption heat pump technology is made for optimizing system parameters and operating parameters. The coal consumption analysis shows that absorption heat pump has a good energy conservation and emission reduction benefits.


Author(s):  
D. S. Sinelnikov ◽  
P. A. Shchinnikov

The article deals with the work of heat and power units of thermal power plants in the conditions of disaggregation of the heat load schedule. The purpose of the work is to increase the efficiency of operation of CHP units operating under the conditions of the zoned temperature schedule. To achieve the obtained results, mathematical modeling based on the methods of differential-exergetic and thermodynamic analysis; methods of material, energy and exergetic balances. Research has shown that in order to increase the efficiency the original method of splitting the temperature graph into three zones can be used, each of which is characterized by the method of regulation of heat supply, and to assess the effect of the minimum fuel consumption criterion can be used. The method of determining the equivalent design temperature, which takes into account the regime peculiarities of heat and power units in the form of a method of regulation of heat supply, is developed. Study has shown that three design points should be available when zoning the temperature schedule. Based on optimization calculations for standard sizes of heat and power units of a wide range of capacities, the calculations show that the optimal parameters of heat and power units in the conditions of zoning of the temperature schedule as a whole correspond to the standard values. In addition, it is shown that in each zone of the temperature schedule there is a saving of fuel, which can be from 3 to 30% depending on the type of power unit, its capacity and zone of the temperature schedule, and the annual fuel consumption of the heat and power units can be reduced by approximately 10%. It is shown that when conventional power units operate according to the zoned temperature schedule and in the first zone (quantitative regulation), preference should be given to power units with steam production. In the second zone (mixed regulation), the operation of power units with steam extraction and heat and power units is equivalent. In addition, in the third zone (qualitative regulation) preference should accrue to heat and power units.


Sign in / Sign up

Export Citation Format

Share Document