Parametric Optimization of Boron Carbide Powder Added Electrical Discharge Machining of Titanium Alloy

2014 ◽  
Vol 592-594 ◽  
pp. 678-683 ◽  
Author(s):  
Murahari Kolli ◽  
Adepu Kumar

The present study deals with the Taguchi technique applied to determine the optimal process parameters of Boron Carbide (B4C) powder mixed electrical discharge machining (EDM) of Titanium alloy. The performance characteristics like material removal rate (MRR) and surface roughness (SR) were experimentally explored for various input parameters such as discharge current, pulse on time, pulse off time and B4C powder concentration in dielectric fluid. The planned optimal setting parameters were conducted and verified through experiments and analyzed using Taguchi technique. Analysis of variance (ANOVA) revealed that discharge current, pulse on time and B4C powder concentration in dielectric are most important parameters affecting both the performance parameters.

Author(s):  
Anshuman Kumar Sahu ◽  
Joji Thomas ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM) is a thermo-electrical process that can be conveniently utilized for generating complex shaped profiles on hard-to-machine conductive materials using metallic tool electrodes. In this work, composite tools made of copper-tungsten-boron carbide (Cu-W-B4C) manufactured by powder metallurgy (PM) route are used during machining of titanium alloy (Ti6Al4V). The effect of four input machining parameters viz. current, pulse-on-time, duty cycle and percentage of tungsten and boron carbide on material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) is studied. A novel meta-heuristic approach such as simple optimization (SOPT) algorithm has been used for single and multi-objective optimization. The pareto-optimal solutions obtained by SOPT have been ranked by VIKOR method to find out the best suitable optimal solution. Analysis of experimental data suggests vital information for controlling the machining parameters to improve the machining performance.


Author(s):  
M. Pradeep Kumar ◽  
S. Vinoth Kumar

This research has been conducted to evaluate the performance of the Liquid Nitrogen (LN2) cooling of copper electrode in electrical discharge machining (EDM) on AISI D2 steel. The experimental process parameter such as discharge current, pulse on time and gap voltage were varied to explore their effects on machining performance, including the electrode wear and surface roughness. It was found that for electrode wear, discharge current, pulse on time, and gap voltage has the most significant effect, while the pulse on time and discharge current have the most significant effect on surface roughness. Analysis on the influence of cooling responses has been carried out and presented in this study. It was found that the electrode wear reduced up to 18% during LN2 cooling. Surface roughness was also significantly reduced while machining with LN2 electrode cooling. Scanning electron microscope (SEM) analysis was carried out to study the surface characteristics of machined surface. EDMed machined surface was also acceptable in LN2 cooling of the electrode.


Author(s):  
Anshuman Kumar Sahu ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM) is broadly used in machining of parts having intricate shapes made of difficult-to-machine materials. During EDM, tool fabrication time through conventional machining processes is generally excessively high. Therefore, alternate tool material and fabrication strategy is sought to reduce machining lead time. In this work, composite tools made of copper, tungsten and boron carbide have been prepared through powder metallurgy (PM) route. The performance of these tools is studied during machining of titanium alloy work piece. The input parameter considered are tool material parameters such as weight percentage of tungsten and boron carbide in the tool and machining parameters like peak current, pulse-on-time and duty cycle. The performance of these tools are evaluated considering the performance measures such as material removal rate (MRR), tool wear rate (TWR), average surface roughness (Ra), surface crack density (SCD), white layer thickness (WLT) and micro-hardness (MH). It is observed that the tool materials have been transferred onto the machined surface forming a hard layer with increased weight percentage of oxygen and carbon during machining. The PM tools exhibit similar performance as solid copper tool with respect to MRR, TWR and surface integrity.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


2021 ◽  
Vol 71 (1) ◽  
pp. 1-18
Author(s):  
Basha Shaik Khadar ◽  
Raju M. V. Jagannadha ◽  
Kolli Murahari

Abstract The paper investigates the influence of boron carbide powder (B4C) mixed in dielectric fluid on EDM of Inconel X-750 alloy. The process parameters selected as discharge current (Ip), pulse on time(Ton), pulse off time(Toff), boron carbide(B4C) powder concentration to examine their performance responses on Material Removal Rate (MRR), Surface Roughness(Ra) and Recast Layer Thickness (RLT).In this study, o examine the process parameters which influence the EDM process during machining of Inconel X-750 alloy using combined techniques of Taguchi and similarity to ideal solutions (TOPSIS).Analysis of variance (ANOVA) was conducted on multi-optimization technique of Taguchi-TOPSIS. ANOVA results identified the best process parameters and their percentages. It developed the mathematical equation on Taguchi-TOPSIS performance characteristics results. The multi optimization results indicated that Ip and Toff are more significant parameters; V, and Ton parameters are less significant. Finally, surface structures were studied at optimized EDM conditions by using scanning electron microscope (SEM).


2020 ◽  
Vol 7 ◽  
pp. 20 ◽  
Author(s):  
Subhashree Naik ◽  
Sudhansu Ranjan Das ◽  
Debabrata Dhupal

Due to the widespread engineering applications of metal matrix composites especially in automotive, aerospace, military, and electricity industries; the achievement of desired shape and contour of the machined end product with intricate geometry and dimensions that are very challenging task. This experimental investigation deals with electrical discharge machining of newly engineered metal matrix composite of aluminum reinforced with 22 wt.% of silicon carbide particles (Al-22%SiC MMC) using a brass electrode to analyze the machined part quality concerning surface roughness and overcut. Forty-six sets of experimental trials are conducted by considering five machining parameters (discharge current, gap voltage, pulse-on-time, pulse-off-time and flushing pressure) based on Box-Behnken's design of experiments (BBDOEs). This article demonstrates the methodology for predictive modeling and multi-response optimization of machining accuracy and surface quality to enhance the hole quality in Al-SiC based MMC, employing response surface methodology (RSM) and desirability function approach (DFA). Finally, a novel approach has been proposed for economic analysis which estimated the total machining cost per part of rupees 211.08 during EDM of Al-SiC MMC under optimum machining conditions. Thereafter, under the influence of discharge current several observations are performed on machined surface morphology and hole characteristics by scanning electron microscope to establish the process. The result shows that discharge current has the significant contribution (38.16% for Ra, 37.12% in case of OC) in degradation of surface finish as well as the dimensional deviation of hole diameter, especially overcut. The machining data generated for the Al-SiC MMC will be useful for the industry.


Author(s):  
Saeed Oskueyan ◽  
Vahid Abedini ◽  
Alireza Hajialimohamadi

Nowadays, special attention is paid to the application of nanoparticles to improve the performance of Electrical Discharge Machining (EDM). In this paper, modeling and optimizing the process parameters of Nanopowder Mixed Electrical Discharge Machining (NPMEDM) is studied. In this study, the effect of aluminum oxide (Al2O3) and silicon oxide (SiO2) nanoparticles on the deionized water dielectric is investigated simultaneously in the process of electrical discharge machining of Ti-6Al-4V alloy. After analyzing the parameters, the discharge current, concentration, pulse on time, and relative composition are considered as input factors. Response Surface Methodology (RSM) using Design-Expert software is employed for the design of the experiments, analysis of the results, and optimization of the parameters. The results show that the best surface morphology is obtained by machining with the addition of nanoparticles in the relative composition of 50%. In this percentage of the composition, the surface of the workpiece has the least value of crack and recast layer. In addition, the maximum value of the material removal rate (MRR) and minimum value of tool wear rate (TWR) can be achieved in the discharge current of 12 A, pulse on-time of 100 μs, and relative composition of 75% Al2O3 – 25% SiO2.


2020 ◽  
Vol 62 (5) ◽  
pp. 481-491
Author(s):  
Engin Nas

Abstract This study investigated the electrical discharge machining (EDM) performance of Ramor 500 Armor steel, a material used in the defense industry for armor production. In addition, the surface quality and amount of material wear of the treated surfaces were determined using different electrical discharge processing parameters for a copper electrode including pulse on-time (99, 150, 225, 300, 351 μs), pulse off-time (10, 15, 23, 30, 35 μs), and discharge current (3, 4, 6, 8, 9 A), at a constant pressure of 1 mm depth of cut. As a result of the experiments, the values related to the material removal rate (MRR) and the surface roughness (Ra) were obtained and the findings analyzed via response surface methodology (RSM). The increase in amperage and pulse on time resulted in an increase in Ra and MRR values. The minimum and maximum Ra and MRR values emerged at currents of 3 and 9 A, respectively. In the experiments performed applying currents of between 3 and 9 A, the white layer widths were measured as 0.0474 mm and 0.0915 mm, respectively. The statistical test results showed that the most effective processing parameters for the MRR were the discharge current amperage (49.01 %) and the pulse off-time (16.51 %), whereas the most effective parameter for the Ra value was the discharge current amperage (79.07 %).


Sign in / Sign up

Export Citation Format

Share Document