On the Use of Vector-Valued Intensity Measure to Predict Peak and Cumulative Demands of Steel Frames under Narrow-Band Motions

2014 ◽  
Vol 595 ◽  
pp. 137-142 ◽  
Author(s):  
Edén Bojórquez ◽  
Alfredo Reyes-Salazar ◽  
Sonia E. Ruiz

In this study, various alternative vector-valued ground motion intensity measures (IMs) are used to estimate maximum inter-story drifts and hysteretic energy demands of steel framed buildings under long duration narrow-band ground motions. The vectors are based on the spectral acceleration at first mode of the structure as first parameterSa (T1). As the second parameter of the vector,IMsrelated to peak, integral and spectral shape parameters are selected. It is concluded that spectral-shape-based vector-valuedIMshave the best relation with maximum inter-story drift and energy demands in steel frames subjected to narrow-band earthquake ground motions.

2017 ◽  
Vol 11 ◽  
pp. 73-78
Author(s):  
Edén Bojórquez ◽  
Victor Baca ◽  
Juan Bojórquez ◽  
Alfredo Reyes-Salazar ◽  
Robespierre Chávez ◽  
...  

2019 ◽  
Vol 23 (7) ◽  
pp. 1350-1366 ◽  
Author(s):  
Yikun Qiu ◽  
Changdong Zhou ◽  
Siha A ◽  
Guangwei Zhang

Ground motion intensity measures are of great importance for the seismic design of structures. A well-chosen intensity measure will reduce the detailed ground motion record selection effort for the nonlinear dynamic structural analyses. In this article, a spectral-acceleration-based combination-type earthquake intensity measure is presented. This intensity measure considers the higher modes effect and period elongation effect due to nonlinear deformation at the same time. The modal mass participation factors are determined to take weighting coefficients and the product of elastic first-mode period T1 and a constant C is expressed to represent the elongated period. Therefore, the proposed intensity measure is a combination of earthquake ground motion characteristics, elastic structural responses, higher modes participation, and the period elongation effect due to inelastic structural behaviors. Four three-dimensional models of reinforced concrete stack-like structures including a 240 m-high chimney, a 180 m-high chimney, a 120 m-high chimney, and a 42.3 m-high water tower are established and analyzed in ABAQUS to investigate the correlation between the intensity measure and the maximum curvatures under 44 far-field ground motions and 28 near-fault ground motions with a pulse-like effect. With the optimal vibration modes and the proper period elongation coefficient, the efficiency of the introduced intensity measure is compared with the other 15 intensity measures. The results indicate that the proposed intensity measure is believed to be a good choice for high-rise stack-like structures, especially under the near-fault ground motions with pulse-like effect.


2020 ◽  
Vol 36 (1) ◽  
pp. 378-399
Author(s):  
Ezra Jampole ◽  
Eduardo Miranda ◽  
Gregory G. Deierlein

This article evaluates a pulse intensity measure, the effective incremental ground velocity ( EIGV), for predicting sliding displacements induced by real ground motions. EIGV is based on computing the additional incremental velocity of a pulse after a system begins to slide. Predictions of peak sliding displacements are made using multiple ground motion and pulse intensity measures, and it is found that at high friction levels, defined here as friction coefficient above 0.15, EIGV is a very effective parameter with a lognormal standard deviation of predicted displacements around 0.5, despite including only the properties of the largest pulse in a record. For high-friction systems, very few pulses usually cause the peak sliding displacement during the response history, hence the potential for an effective pulse intensity measure. EIGV improves sliding displacement predictions compared to existing intensity measures, which are geared toward conventional hysteretic systems. Prediction equations are developed for peak relative sliding displacement as a function of EIGV, the sliding interface coefficient of friction, and the radius of curvature for concave sliding surfaces.


2015 ◽  
Vol 19 (3) ◽  
pp. 697-711 ◽  
Author(s):  
Eden Bojorquez ◽  
Laura Astorga ◽  
Alfredo Reyes-Salazar ◽  
Amador Teran-Gilmore ◽  
Juan Velazquez ◽  
...  

2006 ◽  
Vol 22 (2) ◽  
pp. 413-438 ◽  
Author(s):  
Steven L. Kramer ◽  
Robert A. Mitchell

The requirements of performance-based earthquake engineering place increasing importance on the optimal characterization of earthquake ground motions. With respect to liquefaction hazard evaluation, ground motions have historically been characterized by a combination of peak acceleration and earthquake magnitude, and more recently by Arias intensity. This paper introduces a new ground motion intensity measure, CAV5, and shows that excess pore pressure generation in potentially liquefiable soils is considerably more closely related to CAV5 than to other intensity measures, including peak acceleration and Arias intensity. CAV5 is shown to be an efficient, sufficient, and predictable intensity measure for rock motions used as input to liquefaction hazard evaluations. An attenuation relationship for CAV5 is presented and used in an example that illustrates the benefits of scaling bedrock motions to a particular value of CAV5, rather than to the historical intensity measures, for performance-based evaluation of liquefaction hazards.


2017 ◽  
Vol 150 ◽  
pp. 334-345 ◽  
Author(s):  
Edén Bojórquez ◽  
Victor Baca ◽  
Juan Bojórquez ◽  
Alfredo Reyes-Salazar ◽  
Robespierre Chávez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document