Modeling and Controller Comparison for Quarter Car Suspension System by Using PID and Type-1 Fuzzy Logic

2014 ◽  
Vol 598 ◽  
pp. 524-528 ◽  
Author(s):  
Abdullah Çakan ◽  
Fatih Mehmet Botsalı ◽  
Mustafa Tinkir

Ensuring vehicle drive comfort and securing drive safety are the leading topics among the most interested issues for researchers in vehicle dynamics area. In this paper, a method utilizing a linear actuator is proposed for active control of the vehicle vibrations which are caused by road profile, intending to improve drive comfort and safety of road vehicles. The mathematical model belonging to the system that is evaluated as two degrees of freedom quarter car suspension system is derived by using Lagrange Equation of Motion and MATLAB/Simulink software. In addition to modeling technique, dynamic model of proposed system is created in MSC-ADAMS software and it is simulated in both Matlab and Adams programs together. Moreover two different controllers are designed, which are PID and Artificial Neural Network Based Fuzzy Logic (ANNFL) control in order to use in active vibration control simulations. Performances of the designed controllers are examined and the suitability of the designed controllers is studied by comparing their performances in case of using two different road profile functions.

Author(s):  
Ali Fellah Jahromi ◽  
A. Zabihollah

A novel semi-active control system for suspension systems of passenger car using Magnetorheological (MR) damper is introduced. The suspension system is considered as a massspring model with an eight-degrees-of-freedom, a passive damper and an active damper. The semi-active vibration control is designed to reduce the amplitude of automotive vibration caused by the alteration of road profile. The control mechanism is designed based on the optimal control algorithm, Linear Quadratic Regulator (LQR). In this system, the damping coefficient of the shock absorber changes actively trough inducing magnetic field. It is observed that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car, thus, providing comfortable drive. The new developed suspension system may lead to design and manufacturing of passenger car in which the passenger may not feel the changes in road profile from highly bumpy to smooth profile.


2015 ◽  
Vol 11 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Wissam Al-Mutar ◽  
Turki Abdalla

The objective of this paper is to design an efficient control scheme for car suspension system. The purpose of suspension system in vehicles is to get more comfortable riding and good handling with road vibrations. A nonlinear hydraulic actuator is connected to passive suspension system in parallel with damper. The Particles Swarm Optimization is used to tune a PID controller for active suspension system. The designed controller is applied for quarter car suspension system and result is compared with passive suspension system model and input road profile. Simulation results show good performance for the designed controller.


Author(s):  
A.S Emam

This study details an efficient fuzzy logic controller (FLC) to improve the performance of active automotive suspension system. A comparison between passive and FLC active suspensions is performed. A mathematical model of automotive active suspension has six degrees of freedom and two input forces generated by two separate actuators are solved using Matlab Simulink. In order to evaluate the effectiveness of the proposed controller under random road disturbance, several performance criteria are assessed based on the dynamic response of the half automotive suspension system. Simulation results of the active suspension system based on the fuzzy logic clearly have been provided to illustrate the effectiveness of the FLC under different road conditions and confirmed that fuzzy logic is very effective for enhancing ride comfort and stability of the vehicle.


2018 ◽  
Vol 184 ◽  
pp. 02018
Author(s):  
Ahmet Mehmet Karadeniz ◽  
Alsabbagh Ammar ◽  
Husi Dr.Geza

Developing and constantly changing technologies, efforts to achieve maximum efficiency with minimum fuel consumption, as well as the development of comfort and safety systems, have become very essential topic in car manufacturing and design. Whereas comfort and security were not given a high importance in the first produced cars, they are indispensable elements of today's automobiles. Since public transportation uses road in large scale, the need for safety and repose is also increasing. Nowadays, vehicles have better security and comfort systems, which react very quickly to all kinds of loads and different cases of driving (braking, acceleration, high speed, cornering), where the tires can keep the road at its best, utilizing an advanced suspension system. In this study, a quarter-car model was fulfilled using LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) software. The control of this model has been realized by applying two different controllers. PID (proportional, integral, derivative) controller which is a common and conventional control method and the Fuzzy Logic controller which is considered as an expert system that is becoming more and more widely used. In both control approaches, controlling the suspension system was achieved successfully. However; It has been determined that controlling the system using Fuzzy Logic controller gave better dynamic response than applying the PID controller for the quarter car suspension model that has been used in the direction of this study.


Sign in / Sign up

Export Citation Format

Share Document