Kinematic Modeling and Hardware Development of 5-DoF Robot Manipulator

2014 ◽  
Vol 612 ◽  
pp. 51-58
Author(s):  
Kumar Patel Dharmendra ◽  
K. Ramachandra ◽  
Singh Sartaj

This paper presents a 5-DoF articulated robot manipulator and proposes a strategy for solving its inverse kinematics. The Denavit – Hartenberg (D-H) parameterization has been used to model the kinematics of the manipulator. As degree of freedom of manipulator increases, the geometrical solution for inverse kinematics becomes difficult; hence an analytical method for the same is presented. Novelty in the method presented is that no approximations of trigonometric functions are used resulting in a theoretical positional accuracy of 10-10mm of the end-effector. The articulated robotic manipulator developed makes use of integrated actuators and rapid prototyping technology enabling easy replication for educational purposes. The robot arm has been used for manipulation tasks in its workspace successfully.

2022 ◽  
Author(s):  
Madhav Rao

This study examines the system integration of a game engine with robotics middleware to drive an 8 degree offreedom (DoF) robotic upper limb to generate human-like motion for telerobotic applications. The developed architectureencompasses a pipeline execution design using Blender Game Engine (BGE) including the acquisition of real humanmovements via the Microsoft Kinect V2, interfaced with a modeled virtual arm, and replication of similar arm movements on the physical robotic arm. In particular, this study emphasizes the integration of a human “pilot” with ways to drive such a robotic arm through simulation and later, into a finished system. Additionally, using motion capture technology, a human upper limb action was recorded and applied onto the robot arm using the proposed architecture flow. Also, we showcase the robotic arm’s actions which include reaching, picking, holding, and dropping an object. This paper presentsa simple and intuitive kinematic modeling and 3D simulation process, which is validated using 8-DoF articulated robot to demonstrate methods for animation, and simulation using the designed interface.


Robotica ◽  
2014 ◽  
Vol 33 (4) ◽  
pp. 747-767 ◽  
Author(s):  
Masayuki Shimizu

SUMMARYThis paper proposes an analytical method of solving the inverse kinematic problem for a humanoid manipulator with five degrees-of-freedom (DOF) under the condition that the target orientation of the manipulator's end-effector is not constrained around an axis fixed with respect to the environment. Since the number of the joints is less than six, the inverse kinematic problem cannot be solved for arbitrarily specified position and orientation of the end-effector. To cope with the problem, a generalized unconstrained orientation is introduced in this paper. In addition, this paper conducts the singularity analysis to identify all singular conditions.


1987 ◽  
Vol 109 (4) ◽  
pp. 299-309 ◽  
Author(s):  
N. G. Chalhoub ◽  
A. G. Ulsoy

The operation of high precision robots is severely limited by. their manipulator dynamic deflection, which persists for a period of time after a move is completed. These unwanted vibrations deteriorate the end effector positional accuracy and reduce significantly the robot arm production rate. A “rigid and flexible motion controller” is derived to introduce additional damping into the flexible motion. This is done by using additional sensors to measure the compliant link vibrations and feed them back to the controller. The existing actuators at the robot joints are used (i.e., no additional actuators are introduced). The performance of the controller is tested on a dynamic model, developed in previous work, for a spherical coordinate robot arm whose last link only is considered to be flexible. The simulation results show a significant reduction in the vibratory motion. The important issue of control and observation spillover is examined and found to present no significant practical problems. Partial evaluation of this approach is performed experimentally by testing two controllers, a “rigid body controller” and a “rigid and flexible motion controller,” on a single joint of a spherical coordinate, laboratory robot arm. The experimental results show a significant reduction in the end effector dynamic deflection; thus partially validating the results of the digital simulation studies.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jianping Shi ◽  
Yuting Mao ◽  
Peishen Li ◽  
Guoping Liu ◽  
Peng Liu ◽  
...  

The inverse kinematics of redundant manipulators is one of the most important and complicated problems in robotics. Simultaneously, it is also the basis for motion control, trajectory planning, and dynamics analysis of redundant manipulators. Taking the minimum pose error of the end-effector as the optimization objective, a fitness function was constructed. Thus, the inverse kinematics problem of the redundant manipulator can be transformed into an equivalent optimization problem, and it can be solved using a swarm intelligence optimization algorithm. Therefore, an improved fruit fly optimization algorithm, namely, the hybrid mutation fruit fly optimization algorithm (HMFOA), was presented in this work for solving the inverse kinematics of a redundant robot manipulator. An olfactory search based on multiple mutation strategies and a visual search based on the dynamic real-time updates were adopted in HMFOA. The former has a good balance between exploration and exploitation, which can effectively solve the premature convergence problem of the fruit fly optimization algorithm (FOA). The latter makes full use of the successful search experience of each fruit fly and can improve the convergence speed of the algorithm. The feasibility and effectiveness of HMFOA were verified by using 8 benchmark functions. Finally, the HMFOA was tested on a 7-degree-of-freedom (7-DOF) manipulator. Then the results were compared with other algorithms such as FOA, LGMS-FOA, AE-LGMS-FOA, IFOA, and SFOA. The pose error of end-effector corresponding to the optimal inverse solution of HMFOA is 10−14 mm, while the pose errors obtained by FOA, LGMS-FOA, AE-LGMS-FOA, IFOA, and SFOA are 102 mm, 10−1 mm, 10−2 mm, 102 mm, and 102 mm, respectively. The experimental results show that HMFOA can be used to solve the inverse kinematics problem of redundant manipulators effectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Md. Masum Billah ◽  
Raisuddin Khan

We investigate the kinematic feasibility of a tendon-based flexible parallel platform actuator. Much of the research on tendon-driven Stewart platforms is devoted either to the completely restrained positioning mechanism (CRPM) or to one particular type of the incompletely restrained positioning mechanism (IRPM) where the external force is provided by the gravitational pull on the platform such as in cable-suspended Stewart platforms. An IRPM-based platform is proposed which uses the external force provided by a compliant member. The compliant central column allows the configuration to achievenDOFs withntendons. In particular, this investigation focuses on the angular deflection of the upper platform with respect to the lower platform. The application here is aimed at developing a linkable module that can be connected to one another so as to form a “snake robot” of sorts. Since locomotion takes precedence over positioning in this application, a 3-DOF Stewart platform is adopted. For an arbitrary angular displace of the end-effector, the corresponding length of each tendon can be determined through inverse kinematics. Mathematical singularities are investigated using the traditional analytical method of defining the Jacobian.


Author(s):  
Zheng Li ◽  
Ruxu Du ◽  
Man Cheong Lei ◽  
Song Mei Yuan

Inspired by the octopus and snakes, we designed and built a wire-driven serpentine robot arm. The robot arm is made of a number of rigid nodes connected by two sets of wires. The rigid nodes act as the backbone while the wires work as the muscle, which enables the 2 DOF bending. The forward kinematics is derived using D-H method, while the inverse kinematics and its workspace can be solved by geometric analysis. To validate the design, a prototype is built. It is found that the positioning error of the robot arm is generally less than 2%. The advantage of this robot arm is that with several nodes fixed the rest nodes are still controllable. The positioning error is smaller when the fixed node is closer to the end effector.


Robot is a machine that collects the information about the environment using some sensors and makes a decision automatically. People prefer it to use different field, such as industry, some dangerous jobs including radioactive effects. In this point, robots are regarded as a server. They can be managed easily and provides many advantages. A robot arm is known manipulator. It is composed of a set of joints separated in space by the arm links. The joints are where the motion in the arm occurs. In basic, a robot arm Consists of the parts: base, shoulder, wrist and end effector. The base is the basic part over the arm, it may be fix or active. The joint is flexible and joins two separated links. The link is fix and supports the wrist. The last part is an end effector. The end effector is used to hold. Vibration is the physical movement or oscillation of a mechanical part about a reference position. The Static analysis is not difficult to analyses. It is solved by analytical method.


Author(s):  
Akhmad Fahruzi ◽  
Bimo Satyo Agomo ◽  
Yulianto Agung Prabowo

Nowadays robotic arm is widely used in various industries, especially those engaged in manufacturing. Robotic arms are usually used to perform jobs such as picking up and moving goods from their place of origin to the location desired by the operator. In this study, a 3d 4 DOF (Degree of Freedom) robotic arm. The prototype was made to move goods with random coordinates to places or boxes whose coordinates were determined in advance. The robot can know the coordinates of the object to be taken or moved. The arm robot prototype design is completed with a camera connected to a computer, where the camera is installed statically (fixed position) above the robot's work area. The camera functions like image processing to detect the object's position by taking the coordinates of the object. Then the object coordinates will be input into inverse kinematics that will produce an angle in every point of the servo arm so that the position of the end effector on the robot arm can be founded and reach the intended object. From the results of testing and analysis, it was found that the error in the webcam test to detect object coordinates was 2.58%, the error in the servo motion test was 12.68%, and the error in the inverse kinematics test was 7.85% on the x-axis, the error was 6.31% on the y-axis and an error of 12.77% on the z-axis. The reliability of the whole system is 66.66%.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Takehiko Ogawa ◽  
Hajime Kanada

In the context of controlling a robot arm with multiple joints, the method of estimating the joint angles from the given end-effector coordinates is called inverse kinematics, which is a type of inverse problems. Network inversion has been proposed as a method for solving inverse problems by using a multilayer neural network. In this paper, network inversion is introduced as a method to solve the inverse kinematics problem of a robot arm with multiple joints, where the joint angles are estimated from the given end-effector coordinates. In general, inverse problems are affected by ill-posedness, which implies that the existence, uniqueness, and stability of their solutions are not guaranteed. In this paper, we show the effectiveness of applying network inversion with regularization, by which ill-posedness can be reduced, to the ill-posed inverse kinematics of an actual robot arm with multiple joints.


2021 ◽  
Vol 13 (2) ◽  
pp. 125-134
Author(s):  
Fransisko Limanuel ◽  
Calvin Susanto ◽  
Ferry Rippun Gideon Manalu

This paper will discuss the calculation of inverse kinematic which will be used to control the 6-DOF articulated robot. This robot consists of 6 Dynamixel MX-28 smart servo with OpenCM 9.04 microcontroller. The articulated robot has been simplified to 4-DOF because there are no obstacles in the work area and no special movements are required. The calculation method uses the intersection point equation between the ball and the line, so that it can make it easier to determine the point in calculating the kinematic inverse. The experiment is carried out using the desired position as input for the kinematic inverse to produce the angle of each joint. From the angle of each joint obtained, it will be entered into forward kinematic so that the end-effector position will be obtained. The desired position will be compared with the end-effector position, and then how much difference will be calculated. From the experimental results, it was found that the inverse kinematic method which has been inverted by the forward kinematic produces the same final position. Keywords: 6-DOF manipulator, Articulated robot, inverse kinematics and forward kinematics, Dynamixel MX-28, OpenCM 9


Sign in / Sign up

Export Citation Format

Share Document