Study of the Active Power Filter for the Electric Vehicle Charging Stake

2014 ◽  
Vol 615 ◽  
pp. 48-51
Author(s):  
Chang Ping Wang ◽  
Shuo Zeng ◽  
Jie Liu

The electric vehicle (EV) charging stake is widely used for recharging the electric car batteries. The charging stake generally adopts switching power supply technology. It will cause serious harmonic pollution to power systems and consume lots of reactive power. Therefore, this dissertation focuses on the active power filter (APF) for the EV charging stake. Firstly, the principle of the APF are briefly introduced. Secondly, the main design and the technical difficulties are illustrated in detail. The controller of the APF is based on the DSP and the model is TMS320F2812. At last, this study is simulated in Matlab and a prototype is constructed. The simulation and the experimental results prove that the APF can functions well for the electric vehicle charging stake. It has achieved the national power quality standard.

2013 ◽  
Vol 724-725 ◽  
pp. 1459-1464
Author(s):  
Quan Liu ◽  
Xiang Ning Xiao ◽  
Zheng Chen

According to power capacity shortage and harmonic pollution caused by the development of electric vehicles (EV), a photovoltaic (PV) charging system with the function of active power filter (APF) is designed. The system could provide charging power and harmonic compensation for electric vehicle charging machines at the same time. When sunlight is insufficient the PV charging system could continue to work in APF mode. In this paper, detailed analyses of system structure and control algorithms are given. Finally, the proposed system is simulated in PSCAD/EMTDC, and the simulation results validate the correctness and feasibility.


Author(s):  
Sandhya P. ◽  
Nagaraj R.

<span lang="EN-US">The power factor is a significant concern in power systems. The significant power loss occurred due to electronic and electrical equipment damages affected by the deviation of physical characteristics, including voltage, current, and frequency parameters.The power loss and quality issues were resolved by introducing filtering techniques in electronic and electrical equipment. Many filtering techniques include passive filtering (PF), Active power filter (APF), and many hybrid approaches are already available. Most of these methods use proper compensation controlling approaches and failed to minimize the total harmonic distortion (THD), and harmonic mitigation in power systems has its best. In this article, an efficient Hybrid-APF using Artificial-Neuro Fuzzy interface system (ANFIS) for software and hardware perspective is designed. The proposed approach uses hybrid controlling strategies which include PI with artificial intelligence (ANFIS) controller, to control the power losses for H-APF. Additionally, current compensation is achieved by PQ-theory, followed by Hysteresis-Current- Controller (HCC). The hardware architecture of ANFIS with HCC is designed to improve the chip-area for real-time power applications.The present work analyzed by simulating the voltage and current waveform. The proposed-H-APF using ANFIS controller, both software and hardware approaches, is compared with other control techniques like H-APF with PI and Fuzzy logic controller by concerning THD,Reactive power, and Different Harmonics and loads improvements.</span>


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1951
Author(s):  
Mihaela Popescu ◽  
Alexandru Bitoleanu ◽  
Mihaita Linca ◽  
Constantin Vlad Suru

This paper presents the use of a three-phase four-wire shunt active power filter to improve the power quality in the Department of Industrial Electronics of a large enterprise from Romania. The specificity is given by the predominant existence of single-phase consumers (such as personal computers, printers, lighting and AC equipment). In order to identify the power quality indicators and ways to improve them, an A-class analyzer was used to record the electrical quantities and energy parameters in the point of common coupling (PCC) with the nonlinear loads for 27 h. The analysis shows that, in order to improve the power quality in PCC, three goals must be achieved: the compensation of the distortion power, the compensation of the reactive power and the compensation of the load unbalance. By using the conceived three-leg shunt active power filter, controlled through the indirect current control method in an original variant, the power quality at the supply side is very much improved. In the proposed control algorithm, the prescribed active current is obtained as a sum of the loss current provided by the DC voltage and the equivalent active current of the unbalanced load. The performance associated with each objective of the compensation is presented and analyzed. The results show that all the power quality indicators meet the specific standards and regulations and prove the validity of the proposed solution.


2012 ◽  
Vol 27 (3) ◽  
pp. 1628-1636 ◽  
Author(s):  
Peng Zhang ◽  
Kejun Qian ◽  
Chengke Zhou ◽  
Brian G. Stewart ◽  
Donald M. Hepburn

Sign in / Sign up

Export Citation Format

Share Document