Utilization of Multibody Simulations at the Verification of the Stabilizer Bar of the Trolleybus

2014 ◽  
Vol 617 ◽  
pp. 60-65
Author(s):  
Pavel Polach

ŠKODA VÝZKUM s.r.o. (now Výzkumný a zkušební ústav Plzeň s.r.o.) cooperated on the development of the NEOPLAN DMA low-floor articulated trolleybus indented for the City of Boston. Multibody models and finite element models of the trolleybus were utilized in the stage of the vehicle design. The effect of using the rear section stabilizer on driving properties of the trolleybus was investigated utilizing the multibody simulations among others.

Author(s):  
Steven W. Kirkpatrick

Abstract Detailed analyses of vehicle and train collisions are a common part of new vehicle design projects. It is relatively simple to describe appropriate collision scenarios for a train and the resulting collision mechanics are reasonably controlled if the trains remain upright and in-line. These scenarios are well suited to advanced dynamic finite element simulation codes. Alternatively, train derailment analyses are less common and have unique characteristics that make the analyses difficult. The derailment event can involve the interaction of many cars and have a relatively long duration compared to other crash events. Freight derailments can involve trains in excess of 100 cars long and the duration of the derailment response can be on the order of a minute before coming to rest. Further complicating the analysis are the many parameters that are not well characterized or controlled. The motions of rail cars after leaving the tracks are not well known and difficult to model. The wheels and trucks can plough through ground or remaining track sections. The material properties and geometry of the ground can have large variations and are typically not well known or characterized for specific derailment events. Additionally, the geometry of the surrounding terrain can have a wide range of variability at derailment sites. As a result of these complexities, there are far fewer standardized methodologies used for the analysis of derailments. The detailed finite element models are applied in some cases, but the computational requirements to model these events in high fidelity are quite high. This paper provides a review of some past derailment modeling efforts and recent investigations and analyses of derailment events to provide insights into the derailment mechanics of freight trains. The objective is to assess the relative magnitudes of effects such as the braking characteristics, brake application delay time, and blockage force caused by the derailed and overturned cars on the subsequent deceleration of the trailing cars on the rail.


1988 ◽  
Vol 16 (1) ◽  
pp. 18-43 ◽  
Author(s):  
J. T. Oden ◽  
T. L. Lin ◽  
J. M. Bass

Abstract Mathematical models of finite deformation of a rolling viscoelastic cylinder in contact with a rough foundation are developed in preparation for a general model for rolling tires. Variational principles and finite element models are derived. Numerical results are obtained for a variety of cases, including that of a pure elastic rubber cylinder, a viscoelastic cylinder, the development of standing waves, and frictional effects.


1997 ◽  
Author(s):  
Francois Hemez ◽  
Emmanuel Pagnacco ◽  
Francois Hemez ◽  
Emmanuel Pagnacco

2021 ◽  
pp. 107754632199759
Author(s):  
Jianchun Yao ◽  
Mohammad Fard ◽  
John L Davy ◽  
Kazuhito Kato

Industry is moving towards more data-oriented design and analyses to solve complex analytical problems. Solving complex and large finite element models is still challenging and requires high computational time and resources. Here, a modular method is presented to predict the transmission of vehicle body vibration to the occupants’ body by combining the numerical transfer matrices of the subsystems. The transfer matrices of the subsystems are presented in the form of data which is sourced from either physical tests or finite element models. The structural dynamics of the vehicle body is represented using a transfer matrix at each of the seat mounting points in three triaxial (X–Y–Z) orientations. The proposed method provides an accurate estimation of the transmission of the vehicle body vibration to the seat frame and the seated occupant. This method allows the combination of conventional finite element analytical model data and the experimental data of subsystems to accurately predict the dynamic performance of the complex structure. The numerical transfer matrices can also be the subject of machine learning for various applications such as for the prediction of the vibration discomfort of the occupant with different seat and foam designs and with different physical characteristics of the occupant body.


Sign in / Sign up

Export Citation Format

Share Document