An Evaluation of Derailment Mechanics and Derailment Analysis Methodologies

Author(s):  
Steven W. Kirkpatrick

Abstract Detailed analyses of vehicle and train collisions are a common part of new vehicle design projects. It is relatively simple to describe appropriate collision scenarios for a train and the resulting collision mechanics are reasonably controlled if the trains remain upright and in-line. These scenarios are well suited to advanced dynamic finite element simulation codes. Alternatively, train derailment analyses are less common and have unique characteristics that make the analyses difficult. The derailment event can involve the interaction of many cars and have a relatively long duration compared to other crash events. Freight derailments can involve trains in excess of 100 cars long and the duration of the derailment response can be on the order of a minute before coming to rest. Further complicating the analysis are the many parameters that are not well characterized or controlled. The motions of rail cars after leaving the tracks are not well known and difficult to model. The wheels and trucks can plough through ground or remaining track sections. The material properties and geometry of the ground can have large variations and are typically not well known or characterized for specific derailment events. Additionally, the geometry of the surrounding terrain can have a wide range of variability at derailment sites. As a result of these complexities, there are far fewer standardized methodologies used for the analysis of derailments. The detailed finite element models are applied in some cases, but the computational requirements to model these events in high fidelity are quite high. This paper provides a review of some past derailment modeling efforts and recent investigations and analyses of derailment events to provide insights into the derailment mechanics of freight trains. The objective is to assess the relative magnitudes of effects such as the braking characteristics, brake application delay time, and blockage force caused by the derailed and overturned cars on the subsequent deceleration of the trailing cars on the rail.

1997 ◽  
Author(s):  
Francois Hemez ◽  
Emmanuel Pagnacco ◽  
Francois Hemez ◽  
Emmanuel Pagnacco

2011 ◽  
Vol 255-260 ◽  
pp. 1597-1602
Author(s):  
Qian Zhou ◽  
Wei Ming Yan

To protect Chinese ancient building,by theoretical calculation and finite element simulation sinkage as well as strengthening method on tenon-mortise joint of a face beam in Tai-He Palace in the Forbidden City were studied.2 strengthening methods were considered,by which calculation diagrams as well as finite element models for the beam were built and static analysis were carried out.Based on analysis results,displacement as well as stress distributions of the face beam before strengthened were obtained;Based on laws of cultural relics protection,the 2 strengthening methods were discussed and the more suitable one was selected.Results show that the main cause of sinkage of the face beam tenon relates closely to over great values of bending,tension as well as shearing stress values at the tenon-mortise joint position;The method that strengthening tenon-mortise joint by additional columns under the face beam may bring adverse effects to the substructure,however the method of using steel-wood composite system to strengthen the joint is more suitable which meets the demand of cultural relics protection.


2008 ◽  
Vol 53 (22) ◽  
pp. 6569-6590 ◽  
Author(s):  
Hani Eskandari ◽  
Septimiu E Salcudean ◽  
Robert Rohling ◽  
Jacques Ohayon

2013 ◽  
Vol 680 ◽  
pp. 410-416 ◽  
Author(s):  
Jun Ming Wang ◽  
Fu Yuan Tong ◽  
Xiao Xue Li

By simplifying the geometric shape of abrasive grain in a cone-shape, the authors conduct the 3D dynamic finite element simulation on profile grinding with axial feed by single abrasive grain using deform-3D software. Analysis is made on the influence upon the grinding forces in case of the same grinding speed, the same grinding depth and the same friction factor between wheel and workpiece at different axial feed. The results show that the normal force and the tangential force increase with the increase of axial feed, but the axial force decreases with the axial feed.


2014 ◽  
Vol 617 ◽  
pp. 60-65
Author(s):  
Pavel Polach

ŠKODA VÝZKUM s.r.o. (now Výzkumný a zkušební ústav Plzeň s.r.o.) cooperated on the development of the NEOPLAN DMA low-floor articulated trolleybus indented for the City of Boston. Multibody models and finite element models of the trolleybus were utilized in the stage of the vehicle design. The effect of using the rear section stabilizer on driving properties of the trolleybus was investigated utilizing the multibody simulations among others.


2017 ◽  
Vol 54 (1) ◽  
pp. 180-179 ◽  
Author(s):  
Raul Cormos ◽  
Horia Petrescu ◽  
Anton Hadar ◽  
Gorge Mihail Adir ◽  
Horia Gheorghiu

The main purpose of this paper is the study the behavior of four multilayered composite material configurations subjected to different levels of low velocity impacts, in the linear elastc domain of the materials, using experimental testing and finite element simulation. The experimental results obtained after testing, are used to validate the finite element models of the four composite multilayered honeycomb structures, which makes possible the study, using only the finite element method, of these composite materials for a give application.


2013 ◽  
Vol 1498 ◽  
pp. 159-168 ◽  
Author(s):  
Jason H. Nadler ◽  
Allison J. Mercer ◽  
Michael Culler ◽  
Keri A. Ledford ◽  
Ryan Bloomquist ◽  
...  

ABSTRACTRemoras (echeneid fish) reversibly attach and detach to marine hosts, almost instantaneously, to “hitchhike” and feed. The adhesion mechanisms that they use are remarkably insensitive to substrate topology and quite different from the latching and suction cup-based systems associated with other species at similar length scales. Remora adhesion is also anisotropic; drag forces induced by the swimming host increase adhesive strength, while rapid detachment occurs when the remora reverses this shear load. In this work, an investigation of the adhesive system’s functional morphology and tissue properties was carried out initially through dissection and x-ray microtomographic analyses. Resulting finite element models of these components have provided new insights into the adaptive, hierarchical nature of the mechanisms and a path toward a wide range of engineering applications.


Aerospace ◽  
2003 ◽  
Author(s):  
P. Smithmaitrie ◽  
J. G. DeHaven ◽  
K. Higuchi ◽  
H. S. Tzou

A piezoelectric curvilinear arc stator designed for an ultrasonic curvilinear motor is studied in this research. Design of piezoelectric curvilinear arc stator is proposed and its governing equations and vibration behavior are investigated. Then, analysis of forced vibration response or driving characteristics to harmonic excitations in the modal domain is conducted. Finite element modeling and analysis of the arc stator are also discussed. Analytical results of free vibration characteristics are compared favorably with the finite element results. Harmonic analyses of the three finite element models reveal changes of dynamic behaviors of three models and also imply operating frequencies with significant traveling wave component. Study of mathematical and finite element simulation results suggests that stable traveling waves can be generated to drive a motor on the proposed curvilinear arc stator system.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Marco Bovo ◽  
Michele Tondi ◽  
Marco Savoia

In order to correctly capture the dynamic behavior of infilled framed buildings, the importance to take into account in seismic design the infill panels’ contribution is nowadays well recognized since they could modify in a significant way the global and local response of the whole building. Despite about sixty years of continuous research in the field, the modelling of the frame-infill interaction still represents a serious issue for the daily practical design since there is no reference model proven to be suitable to cover a wide record of possible cases. Moreover, few works are available in the literature, comparing the results of different modelling proposals with outcomes of dynamic tests on a full-scale building. To this regard, starting from the results of induced vibration dynamic tests performed on a 7-story building with reinforced concrete frames with masonry infill, in the present paper, the effects of the infill presence have been evaluated by comparing experimental outcomes, achieved using a MDOF Circle-Fit identification procedure, with the results obtained by means of numerical analyses performed on finite element models. Using a model updating procedure, the optimal width to assign to the masonry equivalent struts modelling the infill panels was defined. Furthermore, several literature proposals for the definition of the equivalent strut width have been analysed. Thirteen different proposals have been selected and implemented in thirteen different finite element models. The reliability of each proposal has been investigated and quantified by comparing the dynamic properties of the models with the building dynamic response obtained by the experimental tests. The main outcomes of the analyses highlight that different proposals provide a great variability for the strut width. This brings to a large variability of the mechanical properties of the equivalent struts, and as a consequence, the modelling choice also influences the dynamic behaviour of the numerical models. Currently, this represents a serious issue for the daily designers’ activity. The outcomes provided in the paper, although established for a specific case study, can be extended to a wide range of buildings and should drive the future research studies in order to provide more robust criteria for the modelling of this worldwide building class.


Sign in / Sign up

Export Citation Format

Share Document