Fault Detection and Diagnosis for Sensor in Complex Control System Based on KPCA

2014 ◽  
Vol 623 ◽  
pp. 202-210
Author(s):  
Ping Xu ◽  
You Cai Wang ◽  
Kai Wang ◽  
Qiu Yan Wang

The Fault detection and diagnosis for sensors are important for the performance of the complex control system seriously. The kernel principal component analysis (KPCA) effectively captures the nonlinear relationship of the process variables, which computes principal component in high-dimensional feature space by means of integral operators and nonlinear kernel functions. The KPCA method is used in diagnosing for four common sensor faults. At first its fault is detected by Q statistic; secondly its fault is identified by T2 contribution percent change. The simulation and the practical result show the KPCA method has good performance on complex control system in sensor fault detection and diagnosis.

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Yimin Chen ◽  
Jin Wen

Faults, i.e., malfunctioned sensors, components, control, and systems, in a building have significantly adverse impacts on the building’s energy consumption and indoor environment. To date, extensive research has been conducted on the development of component level fault detection and diagnosis (FDD) for building systems, especially the Heating, Ventilating, and Air Conditioning (HVAC) system. However, for faults that have multi-system impacts, component level FDD tools may encounter high false alarm rate due to the fact that HVAC subsystems are often tightly coupled together. Hence, the detection and diagnosis of whole building faults is the focus of this study. Here, a whole building fault refers to a fault that occurs in one subsystem but triggers abnormalities in other subsystems and have significant adverse whole building energy impact. The wide adoption of building automation systems (BAS) and the development of machine learning techniques make it possible and cost-efficient to detect and diagnose whole building faults using data-driven methods. In this study, a whole building FDD strategy which adopts weather and schedule information based pattern matching (WPM) method and feature based Principal Component Analysis (FPCA) for fault detection, as well as Bayesian Networks (BNs) based method for fault diagnosis is developed. Fault tests are implemented in a real campus building. The collected data are used to evaluate the performance of the proposed whole building FDD strategies.


Sign in / Sign up

Export Citation Format

Share Document