Single Beacon Indoor Localization System Based on Counter-Synchronized Compass and RSSI

2014 ◽  
Vol 627 ◽  
pp. 217-222
Author(s):  
Kok Seng Eu ◽  
Kian Meng Yap ◽  
Tiam Hee Tee

Indoor localization system has been a popular research area in recent decades and many of them are based on multiple beacons localization method. However, there are some special applications to which the multiple beacons method is not an optimal solution due to its overdesign and cost of redundancy. Multiple beacons method uses at least three transducers and each transducer’s location must be known to find the location of a target object by using either Triangulation or Trilateration calculation. When the multiple beacons method is applied in an items lost and found system, the precise Cartesian coordinates of a target item can be found, but it is definitely overdesign and incurring redundant cost. It is due to the fact that the target item requires only two simple information i.e. Clock orientation and distance information; therefore, single beacon is enough for the task. In this paper, we propose a single beacon localization method to optimize the solution in the items lost and found system by utilizing clock orientation and estimated distance information. The proposed single beacon localization algorithm has been demonstrated and proven that it can be one of the optimal solutions for items lost and found system.

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 448 ◽  
Author(s):  
Xiaohao Hu ◽  
Zai Luo ◽  
Wensong Jiang

Aiming at the problems of low localization accuracy and complicated localization methods of the automatic guided vehicle (AGV) in the current automatic storage and transportation process, a combined localization method based on the ultra-wideband (UWB) and the visual guidance is proposed. Both the UWB localization method and the monocular vision localization method are applied to the indoor location of the AGV. According to the corner points of an ArUco code fixed on the AGV body, the monocular vision localization method can solve the pose information of the AGV by the PnP algorithm in real-time. As an auxiliary localization method, the UWB localization method is called to locate the AGV coordinates. The distance from the tag on the AGV body to the surrounding anchors is measured by the time of flight (TOF) ranging algorithm, and the actual coordinates of the AGV are calculated by the trilateral centroid localization algorithm. Then, the localization data of the UWB is corrected by the mean compensation method to obtain a consistent and accurate localization trajectory. The experiment result shows that this localization system has an error of 15mm, which meets the needs of AGV location in the process of automated storage and transportation.


Author(s):  
J. Liu ◽  
C. Jiang ◽  
Z. Shi

Sufficient signal nodes are mostly required to implement indoor localization in mainstream research. Magnetic field take advantage of high precision, stable and reliability, and the reception of magnetic field signals is reliable and uncomplicated, it could be realized by geomagnetic sensor on smartphone, without external device. After the study of indoor positioning technologies, choose the geomagnetic field data as fingerprints to design an indoor localization system based on smartphone. A localization algorithm that appropriate geomagnetic matching is designed, and present filtering algorithm and algorithm for coordinate conversion. With the implement of plot geomagnetic fingerprints, the indoor positioning of smartphone without depending on external devices can be achieved. Finally, an indoor positioning system which is based on Android platform is successfully designed, through the experiments, proved the capability and effectiveness of indoor localization algorithm.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 559 ◽  
Author(s):  
Junhuai Li ◽  
Xixi Gao ◽  
Zhiyong Hu ◽  
Huaijun Wang ◽  
Ting Cao ◽  
...  

With the development of wireless technology, indoor localization has gained wide attention. The fingerprint localization method is proposed in this paper, which is divided into two phases: offline training and online positioning. In offline training phase, the Improved Fuzzy C-means (IFCM) algorithm is proposed for regional division. The Between-Within Proportion (BWP) index is selected to divide fingerprint database, which can ensure the result of regional division consistent with the building plane structure. Moreover, the Agglomerative Nesting (AGNES) algorithm is applied to accomplish Access Point (AP) optimization. In the online positioning phase, sub-region selection is performed by nearest neighbor algorithm, then the Weighted K-nearest Neighbor (WKNN) algorithm based on Pearson Correlation Coefficient (PCC) is utilized to locate the target point. After the evaluation on the effect of regional division and AP optimization of location precision and time, the experiments show that the average positioning error is 2.53 m and the average computation time of the localization algorithm based on PCC reduced by 94.13%.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2857
Author(s):  
Simon Tomažič ◽  
Igor Škrjanc

Indoor localization is becoming increasingly important but is not yet widespread because installing the necessary infrastructure is often time-consuming and labor-intensive, which drives up the price. This paper presents an automated indoor localization system that combines all the necessary components to realize low-cost Bluetooth localization with the least data acquisition and network configuration overhead. The proposed system incorporates a sophisticated visual-inertial localization algorithm for a fully automated collection of Bluetooth signal strength data. A suitable collection of measurements can be quickly and easily performed, clearly defining which part of the space is not yet well covered by measurements. The obtained measurements, which can also be collected via the crowdsourcing approach, are used within a constrained nonlinear optimization algorithm. The latter is implemented on a smartphone and allows the online determination of the beacons’ locations and the construction of path loss models, which are validated in real-time using the particle swarm localization algorithm. The proposed system represents an advanced innovation as the application user can quickly find out when there are enough data collected for the expected radiolocation accuracy. In this way, radiolocation becomes much less time-consuming and labor-intensive as the configuration time is reduced by more than half. The experiment results show that the proposed system achieves a good trade-off in terms of network setup complexity and localization accuracy. The developed system for automated data acquisition and online modeling on a smartphone has proved to be very useful, as it can significantly simplify and speed up the installation of the Bluetooth network, especially in wide-area facilities.


Author(s):  
Nadia Ghariani ◽  
Mohamed Salah Karoui ◽  
Mondher Chaoui ◽  
Mongi Lahiani ◽  
Hamadi Ghariani

Author(s):  
Ravichander Janapati ◽  
Ch. Balaswamy ◽  
K. Soundararajan

Localization is the key research area in wireless sensor networks. Finding the exact position of the node is known as localization. Different algorithms have been proposed. Here we consider a cooperative localization algorithm with censoring schemes using Crammer Rao bound (CRB). This censoring scheme  can improve the positioning accuracy and reduces computation complexity, traffic and latency. Particle swarm optimization (PSO) is a population based search algorithm based on the swarm intelligence like social behavior of birds, bees or a school of fishes. To improve the algorithm efficiency and localization precision, this paper presents an objective function based on the normal distribution of ranging error and a method of obtaining the search space of particles. In this paper  Distributed localization of wireless sensor networksis proposed using PSO with best censoring technique using CRB. Proposed method shows better results in terms of position accuracy, latency and complexity.  


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 574
Author(s):  
Chendong Xu ◽  
Weigang Wang ◽  
Yunwei Zhang ◽  
Jie Qin ◽  
Shujuan Yu ◽  
...  

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.


Sign in / Sign up

Export Citation Format

Share Document