GPSR Routing Protocol in Urban Environment

2011 ◽  
Vol 63-64 ◽  
pp. 416-420 ◽  
Author(s):  
Li Cui Zhang ◽  
Guo Qiang Zhang ◽  
Zhi Gang Wang ◽  
Fan Zhang ◽  
Xiao Fei Xu

The research on Communication based on Ad hoc networks between vehicles is highly concerned about in many countries. However, Vehicular Ad hoc Networks (VANETs) is in the environment in which traditional methods have certain limitations. In this paper, vehicular network scenarios and the probability of penetration model are given. Through adding obstacles and the probability of penetration model to NS2, GPSR performs better in the new simulation scenarios.

Author(s):  
Thar Baker ◽  
Jose M. García-Campos ◽  
Daniel Gutiérrez Reina ◽  
Sergio Toral ◽  
Hissam Tawfik ◽  
...  

2018 ◽  
Vol 4 (3) ◽  
pp. 189-199 ◽  
Author(s):  
S.K. Bhoi ◽  
P.M. Khilar ◽  
M. Singh ◽  
R.R. Sahoo ◽  
R.R. Swain

Author(s):  
Gongjun Yan ◽  
Stephan Olariu ◽  
Shaharuddin Salleh

The key attribute that distinguishes Vehicular Ad hoc Networks (VANET) from Mobile Ad hoc Networks (MANET) is scale. While MANET networks involve up to one hundred nodes and are short lived, being deployed in support of special-purpose operations, VANET networks involve millions of vehicles on thousands of kilometers of highways and city streets. Being mission-driven, MANET mobility is inherently limited by the application at hand. In most MANET applications, mobility occurs at low speed. By contrast, VANET networks involve vehicles that move at high speed, often well beyond what is reasonable or legally stipulated. Given the scale of its mobility and number of actors involved, the topology of VANET is changing constantly and, as a result, both individual links and routing paths are inherently unstable. Motivated by this latter truism, the authors propose a probability model for link duration based on realistic vehicular dynamics and radio propagation assumptions. The paper illustrates how the proposed model can be incorporated in a routing protocol, which results in paths that are easier to construct and maintain. Extensive simulation results confirm that this probabilistic routing protocol results in more easily maintainable paths.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2010
Author(s):  
Daniel Domingos Adriano ◽  
Carlos Montez ◽  
Antonio G. N. Novaes ◽  
Michelle Wangham

Milk-run tours with time windows are an essential strategy to collect goods to minimize production and transportation costs. Due to unexpected events at the supplier production or traffic congestion, delays can occur during the vehicle route execution, causing non-compliance between the logistics operator and the company. This paper describes the DMRVR (Dynamic Milk-Run Vehicle Routing) solution that uses a dynamic routing algorithm along with fog-based vehicular ad hoc networks for implementing the collection of goods in milk-run operations that respect the company’s time window. When a production delay occurs, the supplier sends a message through the vehicular network to alert the pickup vehicle, forcing it to make dynamic route changes to satisfy the constraints. We have implemented a queue with a timeout and retransmission features to improve the vehicular network’s message delivery. To assess the DMRVR solution, we analyzed the efficiency of the dynamic vehicle routing and the vehicular network impacts. In the experiments, we used an event-based network simulator OMNeT++ bidirectionally coupled with SUMO (Simulation of Urban Mobility), aiming to make the most realistic simulations. Simulation results show the average route time was lower than the time limit imposed by the company with the DMRVR solution. In dense vehicular network scenarios, the message delivery success rate is higher. Conversely, when the vehicular network scenario is sparse, it is necessary to balance network coverage and distribute more RSUs in specific places.


2015 ◽  
Vol 764-765 ◽  
pp. 817-821
Author(s):  
Ing Chau Chang ◽  
Yuan Fen Wang ◽  
Chien Hsun Li ◽  
Cheng Fu Chou

This paper adopts a two-mode intersection graph-based routing protocol to support efficient packet forwarding for both dense and sparse vehicular ad hoc networks (VANET). We first create an intersection graph (IG) consisting of all connected road segments, which densities are high enough. Hence, the source vehicle leverages the proposed IG/IG bypass mode to greedily forward unicast packets to the boundary intersection via the least cost path of current IG. We then perform the IG-Ferry mode to spray a limited number of packet copies via relay vehicles to reach the boundary intersection of another IG where the destination vehicle resides. NS2 simulations are conducted to show that the two-mode IG/IG-Ferry outperforms well-known VANET routing protocols, in terms of average packet delivery ratios and end-to-end transmission delays.


Sign in / Sign up

Export Citation Format

Share Document