Multi-Channel Simultaneous Data Acquisition System with Variable Sampling Rate

2014 ◽  
Vol 635-637 ◽  
pp. 896-900
Author(s):  
Rui Qing Mao

Data Acquisition System is very important for Environmental Detection Robot in its self-positioning or measuring the spatial distribution of the concentration of poisonous and harmful gases, so the sampling frequency adjustable multi-channel synchronous data acquisition system was designed to satisfy the requirement of Environmental Detection Robot. Signal conditioning circuit,AD7606 interface circuit and the sampling frequency adjustable function were introduced in detail. The performance test results indicate that the data acquisition system can acquire multi-channel Data Simultaneously in real time, furthermore, the sampling rate and input voltage range can be set according to need, its provides the guarantee For environmental detection robot's follow-up data analysis.

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3493
Author(s):  
César Ricardo Soto-Ocampo ◽  
José Manuel Mera ◽  
Juan David Cano-Moreno ◽  
José Luis Garcia-Bernardo

Data acquisition is a crucial stage in the execution of condition monitoring (CM) of rotating machinery, by means of vibration analysis. However, the major challenge in the execution of this technique lies in the features of the recording equipment (accuracy, resolution, sampling frequency and number of channels) and the cost they represent. The present work proposes a low-cost data acquisition system, based on Raspberry-Pi, with a high sampling frequency capacity in the recording of up to three channels. To demonstrate the effectiveness of the proposed data acquisition system, a case study is presented in which the vibrations registered in a bearing are analyzed for four degrees of failure.


2014 ◽  
Vol 800-801 ◽  
pp. 741-744
Author(s):  
Zhi Dong Wu ◽  
You Zheng Cui ◽  
Di Pan

In order to meet the demands of the high precision and high speed, the interface design of TMS320C6713 and AD7679 is widely used in data acquisition system. In this paper, the interface design of TMS320C6713 and AD7679 is introduced, including the design of the interface circuit and the software design of the interface. The configuration of every register of McBSP is also expounded, including configuration method and specific function.


2012 ◽  
Vol 239-240 ◽  
pp. 865-868
Author(s):  
Chun Fu Li ◽  
Yan Qin Li

A data acquisition system for electronic automatic transmission test, which makes use of American NI’s data acquisition card, is designed based on Virtual Instrument. The data can be collected by the data acquisition system include automatic transmission oil pressure, solenoid duty, as well as speed of turbine and output shaft of transmission and throttle degree of engine and so on. The key problems of the system design are measurement method of automatic transmission solenoid duty, signal conditioning circuit design and how to improve sampling rate of the system. Test platform is of a armored vehicle which has equipped a high-power electronic automatic transmission. The automatic transmission shift control strategy and characteristics of throttle oil pressure etc can be obtained through test data acquisition.


2018 ◽  
Vol 10 (1) ◽  
pp. 1-11
Author(s):  
Abdullah Al Amin ◽  
K Siddique E Rabbani

In biomedical instrumentation, computer based data acquisition system is required for recording of physiological parameters and bioelectric signals, which allows signal processing, display, analysis and storage in digital media. However, Most of the commercially available PC based Data Acquisition systems are of very high cost and requires specific commercial software, again at a very high cost. Moreover, if the data is not stored in raw binary or known format, it is not possible for the user to use the data in other system or software of their own choice. Therefore, a low cost, simple and open source PC based data acquisition system for biomedical application would be very useful for biomedical instrument developers and researchers in the low resource countries. In this work, we present such development of data acquisition system. The developed system utilizes an 8-bit ordinary low cost microcontroller and some electronic circuit component to develop the data acquisition system and implementation of USB 1.1 (Universal Serial Bus) interface to PC. The onboard 10-bit ADC of the microcontroller was used for analog data sampling. Two sampling and data transfer mode is implemented, (i) Continuous mode with low sampling rate (800 sample/sec) and practically real time plotting and (ii) Batch mode, with high sampling rate (76.9 k sample/sec) but with batch type plotting. To evaluate the system, PC side GUI (Graphical User Interface) software was also developed. The GUI of system shows that a test sinusoidal signal is reproduced very nicely without any amplitude and phase distortion within the frequency band of 1 to 10 KHz. The system is suitable for low frequency bioelectric signals like ECG, EEG etc. and as well as high frequency signal like EMG, NCV etc. The system is low cost, miniature, simple, and efficient and being used in several indigenously developed medical devices like ECG, EMG, NCV and FIM [Rabbani et al, 1999] at the authors’ department with excellent satisfactory results.Bangladesh Journal of Medical Physics Vol.10 No.1 2017 1-11


2012 ◽  
Vol 433-440 ◽  
pp. 7588-7593 ◽  
Author(s):  
Qing Hua Shang ◽  
Shu Feng Guo ◽  
Chun Yu Yu ◽  
Dian Shuang Zheng

The research on establishing an automated data acquisition system with high speed and accuracy is a hot topic in measurement and testing area. The desire is extremely high in data acquisition systems with high speed, multi-channels and large capacity, therefore research into this field becomes very important and significant. In this paper, a LXI high speed parallel data acquisition system which is combined LXI bus with high-speed data acquisition ability is proposed. And the signal conditioning circuit, ADC, data storage circuit, FPGA main control circuit and LXI interface circuit are introduced in detail. The remote control of the data acquisition system and the high speed transmission of data are realized by using the LXI bus.


2021 ◽  
Author(s):  
Muhammad Nadeem

In a setup for a system long term stability and reliability test, sensors are used to measure physical quantities, affecting the behavior of the system, by sampling the sensor readings, convert it to digital numerical value and saving it for further detail analysis. The sensors are wired to a central location to collect and log data, due to extensive wiring requirements the setup is very difficult and sometimes even impossible to implement. This project presents an implementation of high speed wireless data acquisition system which samples sensors output at high speed (5 KHz), converts it to digital numerical form and sends wirelessly to central data gathering unit thus avoiding home run wiring from each sensor to central data gathering unit where it is logged on USB flash drive and send to PC for real time display. The implementation target was wireless link between a transmitter module, serving a maximum of 8 sensors at 5 KHz sampling rate and 16bit ADC resolution for each sensor, to data gathering unit. The implementation does fall short on specification on number of channels and sampling rate due to limitation of over the air data rate of the radio module, what we were able to achieve is 4 channels of 16 bit ADC resolution at 2 KHz sampling rate using radio module with 300 Kbps over the air data rate. Using different sensors and with different configurable settings the tests shows that the stored data at the data gathering unit and the data stored using wired data acquisition system has no difference. For future improvement radio module with over the air data rate (1.55 Mbps) which allows multiple transmitters connected wirelessly to a single data gathering unit providing more flexibility in sensor deployment. Even though the implementation falls short on some of the features but with using improved radio module and/or using some compression techniques on ADC data, before sending data wirelessly, these short comings could be overcome easily.


Sign in / Sign up

Export Citation Format

Share Document