Design and Simulation of Arrayed Waveguide Grating for Miniature Raman Spectrometer

2014 ◽  
Vol 644-650 ◽  
pp. 3588-3592
Author(s):  
Ying Chao Xu ◽  
Qing Na Wang ◽  
Wen Zhang Zhu

Arrayed waveguide grating (AWG) is a very popular dense wavelength division multiplexing (DWDM) device, which is produced in the field of optical communication technology. Instead of traditional grating and lens spectral system, AWG is used as the spectral chip in miniature Raman spectrometer. It’s quite important for miniature Raman spectrometer in miniaturization and low cost. This paper analyzed the basic principles of AWG device, and introduces the insertion loss, crosstalk and phase error performance parameters, also focuses on the specific technical requirements about wavelength, optical channel number, phase error, wavelength resolution and bandwidth, which are applied in miniature Raman spectrometer. Some new researches and a series of related simulation have been made, finally won the 1 * 40 channels AWG spectral chips, with wavelength range of 880-920 nm, insertion loss of center wavelengths is better than-0.9 dB.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hongqiang Li ◽  
Yaoting Bai ◽  
Xiaye Dong ◽  
Enbang Li ◽  
Yang Li ◽  
...  

Four methods based on a multimode interference (MMI) structure are optimally designed to flatten the spectral response of silicon-on-insulator- (SOI-) based arrayed-waveguide grating (AWG) applied in a demodulation integration microsystem. In the design for each method, SOI is selected as the material, the beam propagation method is used, and the performances (including the 3 dB passband width, the crosstalk, and the insertion loss) of the flat-top AWG are studied. Moreover, the output spectrum responses of AWGs with or without a flattened structure are compared. The results show that low insertion loss, crosstalk, and a flat and efficient spectral response are simultaneously achieved for each kind of structure. By comparing the four designs, the design that combines a tapered MMI with tapered input/output waveguides, which has not been previously reported, was shown to yield better results than others. The optimized design reduced crosstalk to approximately −21.9 dB and had an insertion loss of −4.36 dB and a 3 dB passband width, that is, approximately 65% of the channel spacing.


2000 ◽  
Vol 12 (9) ◽  
pp. 1180-1182 ◽  
Author(s):  
A. Sugita ◽  
A. Kaneko ◽  
K. Okamoto ◽  
M. Itoh ◽  
A. Himeno ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3095 ◽  
Author(s):  
Hoon-Keun Lee ◽  
Jaeyul Choo ◽  
Gangsig Shin

We propose and demonstrate a simple water level monitoring system based on the wavelength division multiplexing (WDM) for the spent fuel pool (SFP) at a nuclear power plant. The basic principle is based on the measurement of the optical power spectra by the Fresnel reflection according to the change of the refractive index at the end facet of the optical fiber tip (OFT). An arrayed waveguide grating (AWG) is employed to achieve multi-channel sensing capability with a C-band broadband light source (BLS) based on amplified spontaneous emission (ASE). The feasibility of the proposed scheme is investigated with a simulation and experimentation. We also investigate the limiting factor for remote transmission. The system performance is degraded by the Rayleigh backscattering of the BLS light, but it can be operated over long distances within 10 km with 5 dB of difference peak power margin.


Sign in / Sign up

Export Citation Format

Share Document