Non-Linear Numerical Simulation of Core Steel Reinforced Concrete Columns Based on ABAQUS Software

2014 ◽  
Vol 651-653 ◽  
pp. 1197-1200
Author(s):  
Kai Wen Li ◽  
Zhi Yang Li ◽  
Yun Zou

Finite element analysis could be used as a supplementary means to investigate mechanical behavior. ABAQUS software is conducted to analyze steel reinforced concrete (SRC) columns. Firstly, in order to validate the rationality of the analytical model, finite element models of test specimens are established to simulate the test process. By comparing the analytical results with experimental ones, it is found that the results from finite element analysis coincide well with that from test. So ABAQUS software could be used as a supplementary means to simulate SRC column mechanical behavior . Further the ductility and ultimate capacity of SRC columns are studied with the changes of steel bone ratio and the axial compressive ratio.

2013 ◽  
Vol 351-352 ◽  
pp. 869-874
Author(s):  
Ke Jia Yang ◽  
Jia Ning Zhu ◽  
Xiao Wen Li

Nonlinear finite element analysis of abnormal exterior joints consist of Steel Reinforced Concrete column and Reinforced Concrete beam was performed using ABAQUS computation program, the joints failure mode and the skeleton curve were calculated. Comparison with experimental results to prove the reliability of finite element analysis. Then, the paper analyzed different parameters which affect the joints loading capacity, the results indicate that to a certain extent, the eccentricity of the upper and lower column sections and steel ratio both have important effects on the stiffness and ultimate loading capacity of the joints; with the increment of the ratio of axial compression, the joints ductility will be reduced.


2012 ◽  
Vol 166-169 ◽  
pp. 318-321
Author(s):  
Ya Feng Xu ◽  
Xu Yang ◽  
Xin Wang ◽  
Shou Yan Bai

The article analysis the seismic behaviors of circular steel tube composite column filled with steel reinforced concrete by the large finite element analysis software ABAQUS, adopted the load-displacement method and aimed at studying the mechanical properties of circular steel tube composite columns filled with steel reinforced concrete under horizontal low-cyclic loading, considering the degree of ductility, capacity of energy dissipation by the steel ratio and axial compression ratio. Under different axial compression ratios and steel ratios, the hysteresis curves and skeleton curves are carried out. Along with the increase of steel ratio, the deformation ability and ultimate bearing capacity are raised, but with the increase of axial compression ratio, the deformation ability becomes worse.


2012 ◽  
Vol 588-589 ◽  
pp. 212-216
Author(s):  
Rui Jing ◽  
Yong Sheng Zhang

With the help of large general finite element analysis software ANSYS, under different parameters, this paper will have a finite element analysis of bearing capacity on circular steel tube compile short column filled with steel reinforced concrete(STCSRC).In the paper,it uses separate models to calculate and analyze.Considering the nonlinear constitutive relation of steel and concrete and determining the type of unit,it is shown that stress distribution and load-displacement curve of specimen under the effect of different parameters.According to the curve and data,analysis results of bearing capacity of specimen have been shown that bearing capacity of STCSRC will increase with concrete strength increasing and it also will increase with steel rate increasing under axial load.Because of core concrete working together with steel tube and angle steel,it can significantly improve the bearing capacity of composite columns, slow down and inhibit shearing inclined cracks occur in the core concrete and develop,and improve the ductility of columns.


Sign in / Sign up

Export Citation Format

Share Document