Conjoint Analysis of Focusing Field Characteristics of Radially Polarized Beams Based on LabVIEW and MATLAB

2014 ◽  
Vol 651-653 ◽  
pp. 2414-2417
Author(s):  
Xiao Qing Zhang ◽  
Yu Dong Jia ◽  
Fu Rong Du

For the aim of analyzing focusing field characteristics of radially polarized beams, a conjoint analyzing method is presented based on LabVIEW and MATLAB. The main program is programmed in the LabVIEW environment, connecting with MATLAB program through ActiveX control. Experimental results show that the strength of the radial component in the center is zero and the strength of the axial component in the center is the largest. The conjoint analysis method realized characteristic analysis of focusing field for radially polarized beams, laying the groundwork for beam transmission of the late application.

2021 ◽  
Vol 60 (29) ◽  
pp. 9205
Author(s):  
Yuhang Fu ◽  
Xianghui Wang ◽  
Zhenyu Xing ◽  
Wenjing Liu ◽  
Jierong Cheng

2013 ◽  
Author(s):  
Ignacio Moreno ◽  
Jeffrey A. Davis ◽  
Don M. Cottrell

2010 ◽  
Vol 18 (7) ◽  
pp. 7064 ◽  
Author(s):  
Xinting Jia ◽  
Youqing Wang ◽  
Bo Li

2019 ◽  
Vol 118 ◽  
pp. 02050
Author(s):  
Xi Yunhua ◽  
Zhu Haojun ◽  
Dong Nan

Because of the limitation of basic data and processing methods, the traditional load characteristic analysis method can not achieve user-level refined prediction. This paper builds a user-level short-term load forecasting model based on algorithms such as decision trees and neural networks in big data technology. Firstly, based on the grey relational analysis method, the influence of meteorological factors on load characteristics is quantitatively analyzed. The key factors are selected as input vectors of decision tree algorithm. This paper builds a category label for each daily load curve after clustering the user’s historical load data. The decision tree algorithm is used to establish classification rules and classify the days to be predicted. Finally, Elman neural network is used to predict the short-term load of a user, and the validity of the model is verified.


2019 ◽  
Vol 9 (5) ◽  
pp. 997
Author(s):  
Lina Guo ◽  
Li Chen ◽  
Rong Lin ◽  
Minghui Zhang ◽  
Yiming Dong ◽  
...  

A specially correlated radially polarized (SCRP) beam with unusual physical properties on propagation in the paraxial regime was introduced and generated recently. In this paper, we extend the paraxial propagation of an SCRP beam to the nonparaxial regime. The closed-form 3 × 3 cross-spectral density matrix of a nonparaxial SCRP beam propagating in free space is derived with the aid of the generalized Rayleigh–Sommerfeld diffraction integral. The statistical properties, such as average intensity, degree of polarization, and spectral degree of coherence, are studied comparatively for the nonparaxial SCRP beam and the partially coherent radially polarized (PCRP) beam with a conventional Gaussian–Schell-model correlation function. It is found that the nonparaxial properties of an SCRP beam are strikingly different from those of a PCRP beam. These nonparaxial properties are closely related to the correlation functions and the beam waist width. Our results may find potential applications in beam shaping and optical trapping in nonparaxial systems.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wei Qu ◽  
Huailiang Zhang ◽  
Wei Li ◽  
Ling Peng ◽  
Wenqian Sun

Purpose To improve the transmission efficiency and reduce the damage to pipes in the hydraulic systems of tunnel boring machine subjected to random vibration, this paper aims to propose a novel dynamic characteristic analysis method that considers random vibration. Design/methodology/approach A fluid-structure interaction motion equation of the pipe is established by using Hamilton’s principle. The finite element method and discrete analysis method of random vibration are used to construct a model of the dynamic behavior of the pipe. Findings The influences of fluid parameters and external excitation parameters on the dynamic characteristics of pipes are analyzed. The experimental results are found to be in good agreement with the simulation results, which demonstrates that the proposed analytical method can provide a theoretical reference for the design and selection of hydraulic pipes subjected to random vibration. Originality/value The proposed method can be regarded as a future calculation method for pipes subjected to random vibration, and the transmission efficiency of the pipe can be improved.


2009 ◽  
Vol 34 (21) ◽  
pp. 3361 ◽  
Author(s):  
Zhehai Zhou ◽  
Qiaofeng Tan ◽  
Qunqing Li ◽  
Guofan Jin

Sign in / Sign up

Export Citation Format

Share Document