Finite Volume Particle Method for Incompressible Flows

2014 ◽  
Vol 656 ◽  
pp. 72-80
Author(s):  
Sterian Danaila ◽  
Delia Teleaga ◽  
Luiza Zavalan

This paper presents an application of the Finite Volume Particle Method to incompressible flows. The two-dimensional incompressible Navier-Stokes solver is based on Chorin’s projection method with finite volume particle discretization. The Finite Volume Particle Method is a meshless method for fluid dynamics which unifies advantages of particle methods and finite volume methods in one scheme. The method of manufactured solutions is used to examine the global discretization error and finally a comparison between finite volume particle method simulations of an incompressible flow around a fixed circular cylinder and the numerical simulations with the CFD code ANSYS FLUENT 14.0 is presented.

2000 ◽  
Vol 10 (09) ◽  
pp. 1363-1382 ◽  
Author(s):  
DIETMAR HIETEL ◽  
KONRAD STEINER ◽  
JENS STRUCKMEIER

We derive a new class of particle methods for conservation laws, which are based on numerical flux functions to model the interactions between moving particles. The derivation is similar to that of classical finite-volume methods; except that the fixed spatial mesh in a finite-volume method is substituted by so-called mass packets of particles. We give some numerical results on a shock wave solution for Burgers equation as well as the well-known one-dimensional shock tube problem.


2016 ◽  
Vol 846 ◽  
pp. 18-22
Author(s):  
Rohit Bhattacharya ◽  
Abouzar Moshfegh ◽  
Ahmad Jabbarzadeh

The flow over bluff bodies is separated compared to the flow over streamlined bodies. The investigation of the fluid flow over a cylinder with a streamwise slit has received little attention in the past, however there is some experimental evidence that show for turbulent regime it reduces the drag coefficient. This work helps in understanding the fluid flow over such cylinders in the laminar regime. As the width of the slit increases the drag coefficient keeps on reducing resulting in a narrower wake as compared to what is expected for flow over a cylinder. In this work we have used two different approaches in modelling a 2D flow for Re=10 to compare the results for CFD using finite volume method (ANSYS FLUENTTM) and Lattice Boltzmann methods. In all cases cylinders of circular cross section have been considered while slit width changing from 10% to 40% of the cylinder diameter. . It will be shown that drag coefficient decreases as the slit ratio increases. The effect of slit size on drag reduction is studied and discussed in detail in the paper. We have also made comparison of the results obtained from Lattice Boltzmann and finite volume methods.


Author(s):  
Rida S. N. Mahmudah ◽  
Masahiro Kumabe ◽  
Takahito Suzuki ◽  
LianCheng Guo ◽  
Koji Morita ◽  
...  

Understanding the freezing behavior of molten metal in flow channels is of importance for severe accident analysis of liquid metal reactors. In order to simulate its fundamental behavior, a 3D fluid dynamics code was developed using Finite Volume Particle (FVP) method, which is one of the moving particle methods. This method, which is fully Lagrangian particle method, assumes that each moving particle occupies certain volume. The governing equations that determine the phase change process are solved by discretizing its gradient and Laplacian terms with the moving particles. The motions of each particle and heat transfer between particles are calculated through interaction with its neighboring particles. A series of experiments for fundamental freezing behavior of molten metal during penetration on to a metal structure was also performed to provide data for the validation of the developed code. The comparison between simulation and experimental results indicates that the present 3D code using the FVP method can successfully reproduce the observed freezing process such as molten metal temperature profile, frozen molten metal shape and its penetration length on the metal structure.


Author(s):  
Sotirios S. Sarakinos ◽  
Georgios N. Lygidakis ◽  
Ioannis K. Nikolos

In this study an academic Computational Fluid Dynamics (CFD) code, named Galatea-I, is described, which employs the Reynolds Averaged Navier–Stokes (RANS) equations along with the artificial compressibility method and the SST (Shear Stress Transport) turbulence model for the prediction of incompressible viscous flows. For the representation of the computational domain unstructured hybrid grids are utilized, composed of tetrahedral, prismatic and pyramidical elements, while for its discretization a node-centered finite-volume scheme is implemented. Galatea-I is enhanced with a parallelization method, which employs spatial domain decomposition, while the data exchange between processors/processes is performed with the use of the Message Passing Interface (MPI) protocol. In addition, a parallel agglomeration multigrid methodology has been incorporated to improve further its computational performance. The proposed code is validated against steady-state flow benchmark test cases, concerning laminar flow over a cubic cavity and a cylindrical surface, as well as turbulent flow over a rectangular wing with a NACA0012 airfoil. The obtained results, compared with these of corresponding reference solvers, reveal Galatea-I’s potential for simulation of inviscid, viscous laminar and turbulent incompressible flows.


Author(s):  
Nicole M. W. Poe ◽  
D. Keith Walters

Finite volume methods on structured and unstructured meshes often utilize second-order, upwind-biased linear reconstruction schemes to approximate the convective terms, in an attempt to improve accuracy over first-order methods. Limiters are employed to reduce the inherent variable over- and under-shoot of these schemes; however, they also can significantly increase the numerical dissipation of a solution. This paper presents a novel non-local, non-monotonic (NLNM) limiter developed by enforcing cell minima and maxima on dependent variable values projected to cell faces. The minimum and maximum values for a cell are determined primarily through the recursive reference to the minimum and maximum values of its upwind neighbors. The new limiter is implemented using the User Defined Function capability available in the commercial CFD solver Ansys FLUENT. Various simple test cases are presented which exhibit the NLNM limiter’s ability to eliminate non-physical oscillations while maintaining relatively low dissipation of the solution. Results from the new limiter are compared with those from other limited and unlimited second-order upwind (SOU) and first-order upwind (FOU) schemes. For the cases examined in the study, the NLNM limiter was found to improve accuracy without significantly increasing solution convergence rate.


2011 ◽  
Vol 51 (1) ◽  
pp. 85-99 ◽  
Author(s):  
João Marcelo Vedovoto ◽  
Aristeu da Silveira Neto ◽  
Arnaud Mura ◽  
Luis Fernando Figueira da Silva

Sign in / Sign up

Export Citation Format

Share Document