Smart Adaptive CNC Machining - State of the Art

2014 ◽  
Vol 657 ◽  
pp. 859-863 ◽  
Author(s):  
Anton Mircea Vasiloni ◽  
Mircea Viorel Dragoi

Condition monitoring is becoming popular in industry because of its efficient role in detecting potential failures. The use of condition monitoring techniques will generally improve plant production availability and reduce downtime cost. A reliable adaptive control system can prevent downtime of the machine or avoid unwanted conditions such as chatter vibration, excessive tool wear by allowing the optimum utilization of the tool life. To ensure the quality of machining products, reduce the machining costs and increase the machining efficiency, it is necessary to adjust the machining parameters in real time. A survey of actual researches is presented in this paper in purpose to define new directions of improvement of adaptive control towards smart machining systems.

2013 ◽  
Vol 10 (3) ◽  
pp. 202-209 ◽  
Author(s):  
B. Srinivasa Prasad ◽  
D. Siva Prasad ◽  
A. Sandeep ◽  
G. Veeraiah

2018 ◽  
Vol 224 ◽  
pp. 01048 ◽  
Author(s):  
Roman Nekrasov ◽  
Ulyana Putilova ◽  
Yulia Tempel

The quality of the part is characterized by precision of its processing. A good fit of the product parts and, as a consequence, its reliability in general depends on how accurately the size and shape of the part is maintained during machining. In this connection, the article considers the problem of ensuring the accuracy during machining of work pieces using CNC machines. Within the identified problem, the analysis of known technical solutions in this area was carried out and three main areas were identified: optimization of cutting conditions, improvement of the treated surface area according to the criteria for increasing the resistance of the cutting tool, as well as error tracking and correction during machining. The main disadvantages of the analyzed methods and inventions are complexity of their implementation, the need to equip the CNC machine with an adaptive control system, and a limited field of application. Therefore, a method for controlling the accuracy of shaft processing using mathematical and finite element modeling is proposed.


Author(s):  
Eder Silva Costa ◽  
Pedro Henrique Pires França ◽  
Leonardo Rosa Ribeiro da Silva ◽  
Wisley Sales ◽  
Álisson Rocha Machado ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4852
Author(s):  
Grzegorz Bomba ◽  
Artur Ornat ◽  
Piotr Gierlak

The article discusses the quality testing of a measuring system consisting of a CNC machine with measuring probes. The research was conducted in a broader context regarding the implementation of the closed door technology, i.e., production without human intervention, in an aviation plant manufacturing aircraft gearbox systems. This technology may involve automated measuring operations performed in machining centers, and not in measuring laboratories, provided that the quality of the measurements is appropriate. The aim of the study was to investigate whether the CNC machining device can be used to measure the geometric features of aircraft gearbox housing. For this purpose, measurement experiments were carried out with the use of three different probes. Measurements were carried out using four sequences of increasing complexity, so that, after error analysis, it was possible to find the causes of possible irregularities. A reference ring with known dimensions and position in the working space of the machine was used for the measurements performed as part of the assessment of the measurement system. The quality of the measurements was evaluated with the use of repeatability and reproducibility testing and statistical process control. The analysis results showed that the tested measurement system ensures adequate accuracy and repeatability, and the measurement process is characterized with adequate efficiency in relation to the manufacturing tolerance of the components produced using the machine. Thus, it was proven that the measurement process can be carried out on a machining device, which enables its integration into the closed door technology.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xu Zhao ◽  
Yadong Gong ◽  
Guiqiang Liang ◽  
Ming Cai ◽  
Bing Han

AbstractThe existing research on SiCp/Al composite machining mainly focuses on the machining parameters or surface morphology. However, the surface quality of SiCp/Al composites with a high volume fraction has not been extensively studied. In this study, 32 SiCp/Al specimens with a high volume fraction were prepared and their machining parameters measured. The surface quality of the specimens was then tested and the effect of the grinding parameters on the surface quality was analyzed. The grinding quality of the composite specimens was comprehensively analyzed taking the grinding force, friction coefficient, and roughness parameters as the evaluation standards. The best grinding parameters were obtained by analyzing the surface morphology. The results show that, a higher spindle speed should be chosen to obtain a better surface quality. The final surface quality is related to the friction coefficient, surface roughness, and fragmentation degree as well as the quantity and distribution of the defects. Lower feeding amount, lower grinding depth and appropriately higher spindle speed should be chosen to obtain better surface quality. Lower feeding amount, higher grinding depth and spindle speed should be chosen to balance grind efficiently and surface quality. This study proposes a systematic evaluation method, which can be used to guide the machining of SiCp/Al composites with a high volume fraction.


1999 ◽  
Vol 5 (2) ◽  
pp. 147-153 ◽  
Author(s):  
Dingjun Cui ◽  
Ian A. Craighead

The requirements for a special approach for the quality assessment of small high-speed centrifugal fans are outlined and a new parameter designating the noise levels from the product in comprehensive form will be discussed and described as a criterion for such quality assessment.By applying techniques of signal processing and condition monitoring, the sources of the vibration and noise in different sections of the product can be identified, then the noise from each source from different components can be determined. Using this criterion, more aspects of the quality of the products can be assessed and suggestions to improve the quality of the products can be made. Finally, the assessment of a number ofvacuum cleaner motor/fan units available in the commercial market will be presented and compared with conventional specifications. It will be shown that the new parameter provides a more useful indication of appliance quality.


2009 ◽  
Vol 3 (5) ◽  
Author(s):  
Azlan Abdul Rahman ◽  
Azuddin Mamat ◽  
Abdullah Wagiman

Sign in / Sign up

Export Citation Format

Share Document