Study on System Loss in Distribution Network with DG

2014 ◽  
Vol 672-674 ◽  
pp. 1085-1089
Author(s):  
Jia Meng ◽  
Zai Lin Piao ◽  
Feng Zhou

The access of DG changes the operation and structure of traditional distribution network. This study mainly focused on controlling DG output current to reduce network loss of the system. Select a simple radial distribution system as example for theoretical analysis and derive the expressions of load current and node voltage. Assuming that there exists a real number k between DG output current and load. Then list the network loss and voltage deviation expressions. For the purpose of operation optimization, k can be determined by mathematical calculations. It proves that the method has a certain rationality to be effective in controlling network loss.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
S. Balakumar ◽  
Akililu Getahun ◽  
Samuel Kefale ◽  
K. Ramash Kumar

Voltage stability and line losses are inevitable issues even in modern power systems. There are several techniques that emerged to solve problems in the power system to provide quality and uninterrupted supply to customers. The algorithms used in this paper to determine the appropriate location and size of the Static Var Compensator (SVC) in the Distribution Network (DN) are Moth Flame Optimization (MFO) and Particle Swarm Optimization (PSO). The objective function is defined to minimize voltage deviation and power loss. The burning problem of voltage stability improvement current scenario is because of a rise in electricity demands in all sectors. Paramount duties of power engineers are to keep the system stable and maintain voltage magnitude constant even during peak hours. The results were checked with the aid of MATLAB on Wolaita Sodo radial distribution of 34 bus data networks. The potential use of SVC is key to solve distribution system power quality issues and estimating the advantage of the installation. The results obtained from the test system were compared with PSO results. This comparison was done to know the computational time of proposed techniques. The performance of the MFA based SVC was superior in distribution system and highlighted the importance of device.


Author(s):  
Mounika Kannan ◽  
Kirithikaa Sampath ◽  
Srividhya Pattabiraman ◽  
K Narayanan ◽  
Tomonobu Senjyu

Abstract Abnormal Voltages in electrical distribution system is a threat to power system security and may cause equipment damages. Reconfiguration aids in the proper distribution of load and thus improving the voltage profile. The multi objective framework including node voltage deviation as primary objective and power loss and reliability as secondary objectives is formulated. The novel meta heuristic method based on binary particle swarm optimization (BPSO) is employed to find the optimal radial distribution network configuration for an assortment of objective function. The effect of inertia weight, position and population of swarm is deeply investigated. The proposed method has been verified on IEEE 33 and 69 bus radial distribution systems and found to be effective in minimizing node voltage deviation. The impact of the reconfigured system on voltage deviation, power loss and reliability has been studied extensively. BPSO calculations are found to be simple and has good Convergence characteristics in comparison with other meta heuristic techniques.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4325
Author(s):  
Jiaqi Gu ◽  
Fei Mei ◽  
Jixiang Lu ◽  
Jinjun Lu ◽  
Jingcheng Chen ◽  
...  

The safety and stability of a distribution network will be affected by high photovoltaic (PV) penetration. Therefore, it is of great significance to evaluate the PV accommodation capacity of a distribution network and to select an appropriate PV accommodation scheme. This paper assesses the PV accommodation capacity of a distribution network with an improved algorithm and optimizes the accommodation scheme with a comprehensive index. First, the PSO (particle swarm optimization)–Monte Carlo algorithm is used to evaluate the maximum accommodation capacity of a distribution network with PV integration. Second, a year-round voltage timing simulation is performed to analyze the node voltage that exceeds the limit under the planned PV capacity, which is higher than the previously evaluated maximum accommodation capacity. Finally, the staged control strategy of the PV inverter and energy storage is carried out to select the scheme for the sizing and siting of energy storage. The simulation tests use a 10 kV standard distribution network as an example for PV evaluation and PV accommodation scheme selection to verify the feasibility and effectiveness of the proposed model.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 955 ◽  
Author(s):  
Wei Liu ◽  
Fengming Luo ◽  
Yuanhong Liu ◽  
Wei Ding

With the development of distributed generation technology, the problem of distributed generation (DG) planning become one of the important subjects. This paper proposes an Improved non-dominated sorting genetic algorithm-II (INSGA-II) for solving the optimal siting and sizing of DG units. Firstly, the multi-objective optimization model is established by considering the energy-saving benefit, line loss, and voltage deviation values. In addition, relay protection constraints are introduced on the basis of node voltage, branch current, and capacity constraints. Secondly, the violation constrained index and improved mutation operator are proposed to increase the population diversity of non-dominated sorting genetic algorithm-II (NSGA-II), and the uniformity of the solution set of the potential crowding distance improvement algorithm is introduced. In order to verify the performance of the proposed INSGA-II algorithm, NSGA-II and multiple objective particle swarm optimization algorithms are used to perform various examples in IEEE 33-, 69-, and 118-bus systems. The convergence metric and spacing metric are used as the performance evaluation criteria. Finally, static and dynamic distribution network planning with the integrated DG are performed separately. The results of the various experiments show the proposed algorithm is effective for the siting and sizing of DG units in a distribution network. Most importantly, it also can achieve desirable economic efficiency and safer voltage level.


10.29007/bngk ◽  
2018 ◽  
Author(s):  
Jaydeepsinh Sarvaiya ◽  
Mahipalsinh Chudasama

DG penetration is continuously increased across distribution network not only to reduce carbon emission, but also to enhance the performance of the distribution network. In a restructured environment any distribution utility need to address DG placement and sizing problem to find a cost effective solution for the specific investment. Most of the authors have attempted to solve the problem based on real power loss reduction across the network. Some authors consider voltage stability based analysis for increased loadability of network with real power loss. However, optimal reactive power compensation also need to be incorporated for a cost effective solution. In this paper an attempt has been made to address various types of DG and RPC units citing and sizing problem with multi-objectives consists real power loss reduction and VSI improvement. A new approach includes development of cost function to find cost-effective solution for distribution network. Evolutionary based Genetic Algorithm used to optimize the objective function. Proposed algorithm is tested onIEEE-33 bus radial distribution system.


Author(s):  
Suyanto Suyanto ◽  
Citra Rahmadhani ◽  
Ontoseno Penangsang ◽  
Adi Soeprijanto

<p>Unbalanced three-phase radial distribution system has a complex problem in power system. It has many branches and it is sometimes voltage profile’s not stable at every end branches. For improvement of voltage profile, it can be performed by penetrating of a distributed generation models. Information of voltage profile can be gained by study of power flow.  The Modified Backward-Forward is one of the most widely used methods of development of power flow and has been extensively used for voltage profile analysis. In this paper, a study of power flow based on the Modified Backward-Forward method was used to capture the complexities of unbalanced three phase radial distribution system in the 20 kV distribution network in North Surabaya city, East Java, Indonesia within considering distributed generation models. In summary, for the informants in this study, the Modified Backward-Forward method has had quickly convergence and it’s just needed 3 to 5 iteration of power flow simulation which’s compared to other power flow development methods. Distributed Generation models in the modified the modified 34 BUS IEEE system and 20 kV distribution network has gained voltage profile value on limited range. One of the more significant findings to emerge from this development is that the Modified Backward-Forward method has average of error voltage about 0.0017 % to 0.1749%.</p>


2014 ◽  
Vol 494-495 ◽  
pp. 1739-1742
Author(s):  
Hong Yu Yang

In China,most of distribution system is neutral noneffectively grounded. And the single-phase fault often happens through cement pole. In this paper,firstly,the voltage of the fault phase and the current of cement pole are derived in 10kV neutral noneffectively grounded distribution systems when cement pole has single-phase ground fault.Secondly,the online fault location method is proposed based on voltage gradient of cement pole.Thirdly,the resistence characristic of cement pole is analyzed and the distance obtained from the gradient voltage of cement pole is given.Finally, the theoretical analysis and simulation experiments show that the method is feasible.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1730-1743
Author(s):  
Ahmed H. Mashal ◽  
Rashid H. AL-Rubayi ◽  
Mohammed K. Abd

Contemporary researches offer that most researchers have concentrated on either network reconfiguration or Distributed Generation (DG) units insertion for boosting the performance of the distribution system (DS). However, very few researchers have been studied optimum simultaneous distributed generation units insertion and distribution networks reconfiguration (OSDGIR). In this paper, the stochastic meta-heuristic technique belong to swarm intelligence algorithms is proposed. Salp Swarm Algorithm (SSA) is inspired by the behavior of salps when navigating and foraging in the depth of the ocean. It utilized in solving OSDGIR. The objective function is to reduce power loss and voltage deviation in the Distribution System. The SSA is carried out on two different systems: IEEE 33-bus and local Iraqi radial (AL-Fuhood distribution network). Three cases are implemented; only reconfiguration, only DG units insertion, and OSDGIR. Promising results were obtained, where that power loss reduced by 93.1% and recovery voltage index enhanced by 5.4% for the test system and by 78.77% reduction in power loss and 8.2% improvement in recovery voltage for AL-Fuhood distribution network after applying OSDGIR using SSA. Finally, SSA proved effectiveness after an increase in test system loads by different levels in terms of reduced power loss and voltage deviation comparison with other methods


In this paper the reliability indices are calculated for radial distribution network is improved by placing isolators. Isolators placed at near the tee section of the main radial distribution network used as protection for the load points under abnormal conditions. A seven load point distribution radial network is used to study without isolators and with isolators. Reliability indices evaluated and compared for radial network with isolators and without isolators.


Sign in / Sign up

Export Citation Format

Share Document