Parametric Optimization of Organic Rankine Cycle by Genetic Algorithm

2014 ◽  
Vol 672-674 ◽  
pp. 741-745
Author(s):  
Shuang Bian ◽  
Teng Wu ◽  
Jin Fu Yang

Organic Rankine Cycle (ORC) is widely used in the field of low temperature waste heat recovery, including solar, biomass and geothermal energy, among others. Based on the thermodynamic model of ORC system built up in Matlab, this study employ Genetic Algorithm (GA) on ORC system for parametric optimization and select a ratio of heat transfer area to total net power output as the performance evaluation criterion to predict the economy of system. R11, R113, R123 and isopentane are choosed as the working medium. The results show that the ORC system with isopentane has the minimum objective function value of 0.429m2/kw. The corresponding condensing temperature and degree of supercooling are generally located at lower boundary over their parametric design ranges, and the corresponding pinch point temperature difference are located at upper boundary. For different working fluids, there exist an optimum evaporating temperature and degree of superheat.

Author(s):  
Fredrik Ahlgren ◽  
Maria E. Mondejar ◽  
Magnus Genrup ◽  
Marcus Thern

Maritime transportation is a significant contributor to SOx, NOx and particle matter emissions, even though it has a quite low CO2 impact. New regulations are being enforced in special areas that limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry towards the improvement of the energy efficiency of current ship engines and the reduction of their energy demand. Although more sophisticated and complex engine designs can improve significantly the efficiency of the energy systems in ships, waste heat recovery arises as the most influent technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected in fluid and exhaust gas streams. The primary heat sources for waste heat recovery are the engine exhaust and the engine coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines exhaust heat. Experimental data from the operating conditions of the engines on the M/S Birka Stockholm cruise ship were logged during a port-to-port cruise from Stockholm to Mariehamn over a period of time close to one month. The ship has four main engines Wärtsilä 5850 kW for propulsion, and four auxiliary engines 2760 kW used for electrical consumers. A number of six load conditions were identified depending on the vessel speed. The speed range from 12–14 knots was considered as the design condition, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.


2017 ◽  
Vol 28 (7) ◽  
pp. 725-743 ◽  
Author(s):  
Anahita Moharamian ◽  
Saeed Soltani ◽  
Faramarz Ranjbar ◽  
Mortaza Yari ◽  
Marc A Rosen

A novel cogeneration system based on a wall mounted gas boiler and an organic Rankine cycle with a hydrogen production unit is proposed and assessed based on energy and exergy analyses. The system is proposed in order to have cogenerational functionality and assessed for the first time. A theoretical research approach is used. The results indicate that the most appropriate organic working fluids for the organic Rankine cycle are HFE700 and isopentane. Utilizing these working fluids increases the energy efficiency of the integrated wall mounted gas boiler and organic Rankine cycle system by about 1% and the organic Rankine cycle net power output about 0.238 kW compared to when the systems are separate. Furthermore, increasing the turbine inlet pressure causes the net power output, the organic Rankine cycle energy and exergy efficiencies, and the cogeneration system exergy efficiency to rise. The organic Rankine cycle turbine inlet pressure has a negligible effect on the organic Rankine cycle mass flow rate. Increasing the pinch point temperature decreases the organic Rankine cycle turbine net output power. Finally, increasing the turbine inlet pressure causes the hydrogen production rate to increase; the highest and lowest hydrogen production rates are observed for the working fluids for HFE7000 and isobutane, respectively. Increasing the pinch point temperature decreases the hydrogen production rate. In the cogeneration system, the highest exergy destruction rate is exhibited by the wall mounted gas boiler, followed by the organic Rankine cycle evaporator, the organic Rankine cycle turbine, the organic Rankine cycle condenser, the proton exchange membrane electrolyzer, and the organic Rankine cycle pump, respectively.


Sign in / Sign up

Export Citation Format

Share Document