Local Plastic Strain Measurement by EBSD

2007 ◽  
Vol 7-8 ◽  
pp. 173-179 ◽  
Author(s):  
Masayuki Kamaya ◽  
Joao Quinta da Fonseca ◽  
L.M. Li ◽  
Michael Preuss

Work has been carried out recently, which demonstrates misorientation measurements recorded by using electron backscatter diffraction (EBSD) enables one to undertake local post mortem plastic strain quantification once the degree of misorientation is calibrated against plastic strain. The present paper builds on this work and investigates the possibility of determining strain in individual grains. Due to the anisotropy of crystalline grains, polycrystalline material deform inhomogeneously on a microstructural level. In this study, the local strain induced in a pure copper specimen during tensile loading measured using EBSD was compared to in-situ strain measurements using optical microscopy imaging in conjunction with image correlation technique. By applying an averaging procedure for improving the accuracy of the measured EBSD data, the distribution of the misorientation within grains was quantified, and, as one would expect, it tended to be highest near the grain boundaries.

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 112
Author(s):  
Unai Mayo ◽  
Nerea Isasti ◽  
José M. Rodríguez-Ibabe ◽  
Pello Uranga

Intercritically deformed steels present combinations of different types of ferrite, such as deformed ferrite (DF) and non-deformed ferrite (NDF) grains, which are transformed during the final deformation passes and final cooling step. Recently, a grain identification and correlation technique based on EBSD has been employed together with a discretization methodology, enabling a distinction to be drawn between different ferrite populations (NDF and DF grains). This paper presents a combination of interrupted tensile tests with crystallographic characterization performed by means of Electron Backscatter Diffraction (EBSD), by analyzing the evolution of an intercritically deformed micro-alloyed steel. In addition to this, and using the nanoindentation technique, both ferrite families were characterized micromechanically and the nanohardness was quantified for each population. NDF grains are softer than DF ones, which is related to the presence of a lower fraction of low-angle grain boundaries. The interrupted tensile tests show the different behavior of low- and high-angle grain boundary evolution as well as the strain partitioning in each ferrite family. NDF population accommodates most of the deformation at initial strain intervals, since strain reaches 10%. For higher strains, NDF and DF grains behave similarly to the strain applied.


2021 ◽  
Author(s):  
Ali Mirzazade ◽  
Cosmin Popescu ◽  
Thomas Blanksvärd ◽  
Björn Täljsten

<p>This study is carried out to assess the applicability of using a digital image correlation (DIC) system in structural inspection, leading to deploy innovative instruments for strain/stress estimation along embedded rebars. A semi-empirical equation is proposed to predict the strain in embedded rebars as a function of surface strain in RC members. The proposed equation is validated by monitoring the surface strain in ten concrete tensile members, which are instrumented by strain gauges along the internal steel rebar. One advantage with this proposed model is the possibility to predict the local strain along the rebar, unlike previous models that only monitored average strain on the rebar. The results show the feasibility of strain prediction in embedded reinforcement using surface strain obtained by DIC.</p>


2000 ◽  
Vol 6 (S2) ◽  
pp. 954-955
Author(s):  
Steven R. Claves ◽  
Wojciech Z. Misiolek ◽  
William H. Van Geertruyden ◽  
David B. Williams

Electron Backscattering Diffraction (EBSD) is an important tool for analyzing the crystal grain orientation of a microstructure and can be used to formulate conclusions about microtexture, texture determined from individual grains. This technique has been used to study a 6xxx series aluminum alloy's response to the deformation of the extrusion process. Extrusion is the process by which a billet of material is forced, under high pressure, through a die. The material undergoes a significant decrease in cross sectional area, and is formed into a shape equivalent to the geometry of the die orifice. Different bearing lands are shown in shown in Figure 1. These surfaces form the part, and are designed to control the metal flow making it uniform through the die, thus yielding good mechanical properties. This research was focused on the resultant microstructure. The shaded regions of Figure 2 show the two surface regions where EBSD measurements were taken.


2011 ◽  
Vol 702-703 ◽  
pp. 548-553 ◽  
Author(s):  
Stuart I. Wright ◽  
Jay A. Basinger ◽  
Matthew M. Nowell

Electron backscatter diffraction (EBSD) has become the preferred technique for characterizing the crystallographic orientation of individual grains in polycrystalline microstructures due to its ability to rapidly measure orientations at specific points in the microstructure at resolutions of approximately 20-50nm depending on the capabilities of the scanning electron microscope (SEM) and on the material being characterized. Various authors have studied the angular resolution of the orientations measured using automated EBSD. These studies have stated values ranging from approximately 0.1° to 2° [1-6]. Various factors influence the angular resolution achievable. The two primary factors are the accuracy of the detection of the bands in the EBSD patterns and the accuracy of the pattern center (PC) calibration. The band detection is commonly done using the Hough transform. The effect of varying the Hough transform parameters in order to optimize speed has been explored in a previous work [6]. The present work builds upon the earlier work but with the focus towards achieving the best angular resolution possible regardless of speed. This work first details the methodology used to characterize the angular precision then reports on various approaches to optimizing parameters to improve precision.


Sign in / Sign up

Export Citation Format

Share Document