Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction

2006 ◽  
Vol 54 (2) ◽  
pp. 539-548 ◽  
Author(s):  
Masayuki Kamaya ◽  
Angus J. Wilkinson ◽  
John M. Titchmarsh
2007 ◽  
Vol 537-538 ◽  
pp. 297-302
Author(s):  
Tibor Berecz ◽  
Péter János Szabó

Duplex stainless steels are a famous group of the stainless steels. Duplex stainless steels consist of mainly austenitic and ferritic phases, which is resulted by high content of different alloying elements and low content of carbon. These alloying elements can effect a number of precipitations at high temperatures. The most important phase of these precipitation is the σ-phase, what cause rigidity and reduced resistance aganist the corrosion. Several orientation relationships have been determined between the austenitic, ferritic and σ-phase in duplex stainless steels. In this paper we tried to verify them by EBSD (electron backscatter diffraction).


2011 ◽  
Vol 17 (3) ◽  
pp. 316-329 ◽  
Author(s):  
Stuart I. Wright ◽  
Matthew M. Nowell ◽  
David P. Field

AbstractSince the automation of the electron backscatter diffraction (EBSD) technique, EBSD systems have become commonplace in microscopy facilities within materials science and geology research laboratories around the world. The acceptance of the technique is primarily due to the capability of EBSD to aid the research scientist in understanding the crystallographic aspects of microstructure. There has been considerable interest in using EBSD to quantify strain at the submicron scale. To apply EBSD to the characterization of strain, it is important to understand what is practically possible and the underlying assumptions and limitations. This work reviews the current state of technology in terms of strain analysis using EBSD. First, the effects of both elastic and plastic strain on individual EBSD patterns will be considered. Second, the use of EBSD maps for characterizing plastic strain will be explored. Both the potential of the technique and its limitations will be discussed along with the sensitivity of various calculation and mapping parameters.


2007 ◽  
Vol 539-543 ◽  
pp. 4482-4487 ◽  
Author(s):  
R.L. Higginson ◽  
G.D. West ◽  
M.A.E. Jepson

The oxidation of steels is critically influenced by its constituent alloying elements. These alter the classical three-phase model of the external oxide scales and in addition can introduce internal oxidised regions. This paper considers the oxidation of a number of nickel containing Fe based alloys of varying compositions, including stainless steel. These have been oxidised under different conditions to produce a number of scale morphologies, which have been characterised using two SEM based techniques; Electron Backscatter Diffraction (EBSD) and Energy Dispersive x-ray Spectroscopy (EDS). Results have shown that nickel promotes the formation of a fibrous internal scale, consisting of iron oxide particles (or iron/chromium oxide in the case of stainless steel) along grain boundary regions. Nickel is rejected from these oxide particles and consequently nickel content is enriched in neighbouring metallic areas.


Sign in / Sign up

Export Citation Format

Share Document