Use of Electron Backscatter Diffraction Technique in Characterization of 6XXX Aluminum Alloy Extrusions

2000 ◽  
Vol 6 (S2) ◽  
pp. 954-955
Author(s):  
Steven R. Claves ◽  
Wojciech Z. Misiolek ◽  
William H. Van Geertruyden ◽  
David B. Williams

Electron Backscattering Diffraction (EBSD) is an important tool for analyzing the crystal grain orientation of a microstructure and can be used to formulate conclusions about microtexture, texture determined from individual grains. This technique has been used to study a 6xxx series aluminum alloy's response to the deformation of the extrusion process. Extrusion is the process by which a billet of material is forced, under high pressure, through a die. The material undergoes a significant decrease in cross sectional area, and is formed into a shape equivalent to the geometry of the die orifice. Different bearing lands are shown in shown in Figure 1. These surfaces form the part, and are designed to control the metal flow making it uniform through the die, thus yielding good mechanical properties. This research was focused on the resultant microstructure. The shaded regions of Figure 2 show the two surface regions where EBSD measurements were taken.

2012 ◽  
Vol 18 (4) ◽  
pp. 876-884 ◽  
Author(s):  
Joseph R. Michael ◽  
Bonnie B. McKenzie ◽  
Donald F. Susan

AbstractUnderstanding the growth of whiskers or high aspect ratio features on substrates can be aided when the crystallography of the feature is known. This study has evaluated three methods that utilize electron backscatter diffraction (EBSD) for the determination of the crystallographic growth direction of an individual whisker. EBSD has traditionally been a technique applied to planar, polished samples, and thus the use of EBSD for out-of-surface features is somewhat more difficult and requires additional steps. One of the methods requires the whiskers to be removed from the substrate resulting in the loss of valuable physical growth relationships between the whisker and the substrate. The other two techniques do not suffer this disadvantage and provide the physical growth information as well as the crystallographic growth directions. The final choice of method depends on the information required. The accuracy and the advantages and disadvantages of each method are discussed.


2013 ◽  
Vol 19 (S4) ◽  
pp. 103-104
Author(s):  
C.B. Garcia ◽  
E. Ariza ◽  
C.J. Tavares

Zinc Oxide is a wide band-gap compound semiconductor that has been used in optoelectronic and photovoltaic applications due to its good electrical and optical properties. Aluminium has been an efficient n-type dopant for ZnO to produce low resistivity films and high transparency to visible light. In addition, the improvement of these properties also depends on the morphology, crystalline structure and deposition parameters. In this work, ZnO:Al films were produced by d.c. pulsed magnetron sputtering deposition from a ZnO ceramic target (2.0 wt% Al2O3) on glass substrates, at a temperature of 250 ºC.The crystallographic orientation of aluminum doped zinc oxide (ZnO:Al) thin films has been studied by Electron Backscatter Diffraction (EBSD) technique. EBSD coupled with Scanning Electron Microscopy (SEM) is a powerful tool for the microstructural and crystallographic characterization of a wide range of materials.The investigation by EBSD technique of such films presents some challenges since this analysis requires a flat and smooth surface. This is a necessary condition to avoid any shadow effects during the experiments performed with high tilting conditions (70º). This is also essential to ensure a good control of the three dimensional projection of the crystalline axes on the geometrical references related to the sample.Crystalline texture is described by the inverse pole figure (IPF) maps (Figure 1). Through EBSD analysis it was observed that the external surface of the film presents a strong texture on the basal plane orientation (grains highlighted in red colour). Furthermore it was possible to verify that the grain size strongly depends on the deposition time (Figure 1 (a) and (b)). The electrical and optical film properties improve with increasing of the grain size, which can be mainly, attributed to the decrease in scattering grain boundaries which leads to an increasing in carrier mobility (Figure 2).The authors kindly acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) scientific program for the National Network of Electron Microscopy (RNME) EDE/1511/RME/2005.


2011 ◽  
Vol 702-703 ◽  
pp. 548-553 ◽  
Author(s):  
Stuart I. Wright ◽  
Jay A. Basinger ◽  
Matthew M. Nowell

Electron backscatter diffraction (EBSD) has become the preferred technique for characterizing the crystallographic orientation of individual grains in polycrystalline microstructures due to its ability to rapidly measure orientations at specific points in the microstructure at resolutions of approximately 20-50nm depending on the capabilities of the scanning electron microscope (SEM) and on the material being characterized. Various authors have studied the angular resolution of the orientations measured using automated EBSD. These studies have stated values ranging from approximately 0.1° to 2° [1-6]. Various factors influence the angular resolution achievable. The two primary factors are the accuracy of the detection of the bands in the EBSD patterns and the accuracy of the pattern center (PC) calibration. The band detection is commonly done using the Hough transform. The effect of varying the Hough transform parameters in order to optimize speed has been explored in a previous work [6]. The present work builds upon the earlier work but with the focus towards achieving the best angular resolution possible regardless of speed. This work first details the methodology used to characterize the angular precision then reports on various approaches to optimizing parameters to improve precision.


2006 ◽  
Vol 12 (S02) ◽  
pp. 1516-1517
Author(s):  
F Sweeney ◽  
C Trager-Cowan ◽  
P Edwards ◽  
A Wilkinson ◽  
I Watson

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2005


Sign in / Sign up

Export Citation Format

Share Document