scholarly journals Analysis of Strain Partitioning in Intercritically Deformed Microstructures via Interrupted Tensile Tests

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 112
Author(s):  
Unai Mayo ◽  
Nerea Isasti ◽  
José M. Rodríguez-Ibabe ◽  
Pello Uranga

Intercritically deformed steels present combinations of different types of ferrite, such as deformed ferrite (DF) and non-deformed ferrite (NDF) grains, which are transformed during the final deformation passes and final cooling step. Recently, a grain identification and correlation technique based on EBSD has been employed together with a discretization methodology, enabling a distinction to be drawn between different ferrite populations (NDF and DF grains). This paper presents a combination of interrupted tensile tests with crystallographic characterization performed by means of Electron Backscatter Diffraction (EBSD), by analyzing the evolution of an intercritically deformed micro-alloyed steel. In addition to this, and using the nanoindentation technique, both ferrite families were characterized micromechanically and the nanohardness was quantified for each population. NDF grains are softer than DF ones, which is related to the presence of a lower fraction of low-angle grain boundaries. The interrupted tensile tests show the different behavior of low- and high-angle grain boundary evolution as well as the strain partitioning in each ferrite family. NDF population accommodates most of the deformation at initial strain intervals, since strain reaches 10%. For higher strains, NDF and DF grains behave similarly to the strain applied.

2009 ◽  
Vol 15 (3) ◽  
pp. 197-203 ◽  
Author(s):  
Alberto Pérez-Huerta ◽  
Maggie Cusack

AbstractElectron backscatter diffraction (EBSD) is becoming a widely used technique to determine crystallographic orientation in biogenic carbonates. Despite this use, there is little information available on preparation for the analysis of biogenic carbonates. EBSD data are compared for biogenic aragonite and calcite in the common blue mussel, Mytilus edulis, using different types of resin and thicknesses of carbon coating. Results indicate that carbonate biomineral samples provide better EBSD results if they are embedded in resin, particularly epoxy resin. A uniform layer of carbon of 2.5 nm thickness provides sufficient conductivity for EBSD analyses of such insulators to avoid charging without masking the diffracted signal. Diffraction intensity decreases with carbon coating thickness of 5 nm or more. This study demonstrates the importance of optimizing sample preparation for EBSD analyses of insulators such as carbonate biominerals.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1018
Author(s):  
Sejin Jung ◽  
Takafumi Yamamoto ◽  
Jun-ichi Ando ◽  
Haemyeong Jung

Amphibole peridotite samples from Åheim, Norway, were analyzed to understand the deformation mechanism and microstructural evolution of olivine and amphibole through the Scandian Orogeny and subsequent exhumation process. Three Åheim amphibole peridotite samples were selected for detailed microstructural analysis. The Åheim amphibole peridotites exhibit porphyroclastic texture, abundant subgrain boundaries in olivine, and the evidence of localized shear deformation in the tremolite-rich layer. Two different types of olivine lattice preferred orientations (LPOs) were observed: B- and A-type LPOs. Electron backscatter diffraction (EBSD) mapping and transmission electron microscopy (TEM) observations revealed that most subgrain boundaries in olivine consist of dislocations with a (001)[100] slip system. The subgrain boundaries in olivine may have resulted from the deformation of olivine with moderate water content. In addition, TEM observations using a thickness-fringe method showed that the free dislocations of olivine with the (010)[100] slip system were dominant in the peridotites. Our data suggest that the subgrain boundaries and free dislocations in olivine represent a product of later-stage deformation associated with the exhumation process. EBSD mapping of the tremolite-rich layer revealed intracrystalline plasticity in amphibole, which can be interpreted as the activation of the (100)[001] slip system.


2012 ◽  
Vol 706-709 ◽  
pp. 2788-2793 ◽  
Author(s):  
Dmitry Orlov ◽  
Rimma Lapovok ◽  
László S. Tóth ◽  
Ilana B. Timokhina ◽  
Peter D. Hodgson ◽  
...  

In the present study, the effects of kinematic and geometric asymmetries in rolling during multi-pass processing of IF steel are examined. The theoretical investigation by final element simulations and experimental investigations by means of electron-backscatter diffraction analysis and tensile tests suggest that asymmetric rolling increases the total imposed strain compared to symmetric rolling, and largely re-distributes the strain components due to additional shear. This enhances the intensity of grain refinement, strengthens and tilts crystallographic orientations, and increases mechanical strength. The effect is highest in the asymmetric rolling with differential roll diameters.


2014 ◽  
Vol 47 (4) ◽  
pp. 1261-1266 ◽  
Author(s):  
D. De Knijf ◽  
T. Nguyen-Minh ◽  
R. H. Petrov ◽  
L. A. I. Kestens ◽  
John J. Jonas

The orientation dependence of the austenite-to-martensite transformation during uniaxial tensile testing was modelled using the phenomenological theory of martensite crystallography and the mechanical driving force. It was validated experimentally by means of electron backscatter diffraction measurements on a pre-defined zone of a quenched and partitioned steel during interrupted tensile tests. A close match is obtained between the predictions of the model and the experimental observations.


Proceedings ◽  
2020 ◽  
Vol 62 (1) ◽  
pp. 8
Author(s):  
Ryoko Oishi-Tomiyasu

As mathematical tools that can be commonly used for indexing analyses from different types of experimental patterns, we have recently developed (i) rules on forbidden hkl’s that can be used even when the space group and setting are unknown, (ii) an algorithm for error-stable Bravais lattice determination, (iii) generalization of the de Wolff figure of merit for powder diffraction (1D data) to data in higher-dimensions such as Kikuchi patterns (2D data) by electron backscatter diffraction (EBSD). In particular, (ii) could be used in a variety of situations, not just for indexing. It is explained how (i)–(iii) are used in the mathematical framework of our indexing algorithms.


Author(s):  
José Alberto Padrón-Navarta ◽  
Fabrice Barou ◽  
Nina Daneu

Electron backscatter diffraction (EBSD) was used for the analysis of multiple cyclic twins in cassiterite (SnO2), which form during sintering of SnO2 with small additions of CoO and Nb2O5. Grain misorientation analysis has shown that about one third of all grains contain {101} twin boundaries (TBs). The majority of these grains are contact twins, whereas a small fraction of grains are multiple, mainly cyclic twins. A procedure was developed in MTEX [Bachmann, Hielscher & Schaeben (2010). Solid State Phenom. 160, 63–88] for automated identification of crystallographically different types of cyclic twins and found two main types: coplanar twins composed of three or four domains with a common [010] axis and alternating twins composed of three to seven domains oriented along the [111] axis. Both types of cyclic twins have a characteristic common origin (nucleus) of all TBs, which is positioned eccentric relative to the grain section and the cycle is closed with a shorter non-crystallographic contact between the first and the last twin domain. The morphology of cyclic twins suggests that they form by nucleation in the initial stages of grain growth. The average size of twinned grains increases with the number of twin domains indicating the influence of TBs formation on the growth of composite grains.


2005 ◽  
Vol 495-497 ◽  
pp. 1195-1200 ◽  
Author(s):  
D.T. McDonald ◽  
John F. Humphreys ◽  
Pete S. Bate

Dynamic recrystallization and texture development in polycrystalline copper have been investigated. Specimens were deformed in channel-die plane strain compression to true strains from 0.1 to 0.7 within the temperature range 200°C to 600°C, and the resulting microstructures were investigated with the use of high resolution electron backscatter diffraction (EBSD). Dynamic recrystallization in copper was initiated by the bulging of pre-existing high angle grain boundaries (HAGB), and occurred primarily by strain induced boundary migration (SIBM). Increasing misorientations from parent to dynamically recrystallizing grains indicated the occurrence of lattice rotations within the bulges, leading, in some cases to the formation of a HAGB behind the bulge. Discrimination between recrystallized and deformed components in material which had partially undergone dynamic recrystallization was carried out, followed by texture analysis. This revealed most of the recrystallized material to have orientations close to that of the deformed material, however, some remote orientations were observed which could not be related to the deformation texture by twin or 40° <111> relationships.


2004 ◽  
Vol 467-470 ◽  
pp. 1243-1250 ◽  
Author(s):  
John Wheeler ◽  
Zhenting Jiang ◽  
David J. Prior ◽  
Jan Tullis

It is generally agreed that the driving force (plastic strain energy) is much too small to allow "classical" nucleation during static and dynamic recrystallisation, and that rotation/growth of subgrains is an alternative. The latter explanation predicts that new grains should begin at low angles to old grains. We have used electron backscatter diffraction on an experimentally deformed quartz polycrystal that has deformed by dislocation creep and partially recrystallised. In a region shortened by about 30% new grains are at high angles (much greater than 15º) to adjacent parent grains. A histogram of misorientation versus number of boundaries shows a gap at 15-20º. In its simple form we expect the subgrain rotation model to predict a spectrum of misorientations but with most of them being low angle. Instead, the histogram suggests that new boundaries began life as high-angle structures, so current models for deformation-induced nucleation require refinement.


Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


Sign in / Sign up

Export Citation Format

Share Document