Effect of Anti-Reflective Layer in Dye-Sensitized Solar Cells

2014 ◽  
Vol 705 ◽  
pp. 320-323 ◽  
Author(s):  
Jung Eun Nam ◽  
Hyo Jeong Jo ◽  
Dae Ho Son ◽  
Dae Hwan Kim ◽  
Jin Kyu Kang

Anti-reflective (AR) layers play an important role in boosting the amount of light entering a device and reducing reflection losses in a device, thereby enhancing the power conversion efficiency of solar cells. We have coated an AR layer on the surface of a dye-sensitized solar cell device by using an electron beam evaporation system and investigated the effects of the AR layer by measuring photovoltaic performance. The AR layer is found to increases the Jsc and η of the solar cell.

2015 ◽  
Vol 19 (01-03) ◽  
pp. 175-191 ◽  
Author(s):  
Ganesh D. Sharma ◽  
Galateia E. Zervaki ◽  
Kalliopi Ladomenou ◽  
Emmanuel N. Koukaras ◽  
Panagiotis P. Angaridis ◽  
...  

Two porphyrin dyads with the donor-π-acceptor molecular architecture, namely ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which consist of a zinc-metalated porphyrin unit and a free-base porphyrin unit covalently linked at their peripheries to a central triazine group, substituted either by a glycine in the former or a N-piperidine group in the latter, have been synthesized via consecutive amination substitution reactions of cyanuric chloride. The UV-vis absorption spectra and cyclic-voltammetry measurements of the two dyads, as well as theoretical calculations based on Density Functional Theory, suggest that they have suitable frontier orbital energy levels for use as sensitizers in dye-sensitized solar cells. Dye-sensitized solar cells based on ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ) have been fabricated, and they were found to exhibit power conversion efficiency values of 5.44 and 4.15%, respectively. Photovoltaic measurements (J–V curves) and incident photon to current conversion efficiency spectra of the two solar cells suggest that the higher power conversion efficiency value of the former solar cell is a result of its enhanced short circuit current, open circuit voltage, and fill factor values, as well as higher dye loading. This is ascribed to the existence of two carboxylic acid anchoring groups in ( ZnP )-[triazine-gly]-( H 2 PCOOH ), compared to one carboxylic acid group in ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which leads to a more effective binding onto the TiO 2 photoanode. Electrochemical impedance spectra show evidence that the ( ZnP )-[triazine-gly]-( H 2 PCOOH ) based solar cell exhibits a longer electron lifetime and more effective suppression of charge recombination reactions between the injected electrons and electrolyte.


2018 ◽  
Vol 6 (42) ◽  
pp. 11444-11456 ◽  
Author(s):  
Jonnadula Venkata Suman Krishna ◽  
Narra Vamsi Krishna ◽  
Towhid H. Chowdhury ◽  
Suryaprakash Singh ◽  
Idriss Bedja ◽  
...  

We have designed and synthesised four novel porphyrin sensitizers for dye-sensitized solar cell applications and shown power conversion efficiency of 10.5%.


RSC Advances ◽  
2015 ◽  
Vol 5 (121) ◽  
pp. 100159-100168 ◽  
Author(s):  
Gentian Yue ◽  
Guang Yang ◽  
Fumin Li ◽  
Jihuai Wu

A much higher photovoltaic performance of a dye-sensitized solar cell with a (P-A) Gr/NiCo2O4 counter electrode is achieved than that of a Pt configuration device.


2009 ◽  
Vol 13 (03) ◽  
pp. 369-375 ◽  
Author(s):  
Fabio Silvestri ◽  
Miguel García-Iglesias ◽  
Jun-Ho Yum ◽  
Purificación Vázquez ◽  
M. Victoria Martínez-Díaz ◽  
...  

Two unsymmetrical Zn (II) phthalocyanines 1 and 2 bearing an anchoring carboxylic function linked to the phthalocyanine ring through different rigid arylenevinylene bridges have been designed for dye-sensitized solar cell (DSSC) applications. The phthalocyanines 1 and 2, when anchored onto nanocrystalline TiO 2 films, yielded 30% incident monochromatic photon-to-current conversion efficiency (IPCE) and 2% power conversion efficiencies under AM1.5 sun.


2017 ◽  
Vol 53 (40) ◽  
pp. 5561-5564 ◽  
Author(s):  
Shuai Gu ◽  
Enbing Bi ◽  
Bitian Fu ◽  
Gjergj Dodbiba ◽  
Toyohisa Fujita ◽  
...  

Novel Pt-free dye-sensitized solar cells with a circulating electrolyte demonstrate much better photovoltaic performance than those with a stationary one.


2014 ◽  
Vol 16 (16) ◽  
pp. 7334-7338 ◽  
Author(s):  
Juan Li ◽  
Wei Zhang ◽  
Lu Zhang ◽  
Zhong-Sheng Wang

The power conversion efficiency of a solid-state dye-sensitized solar cell was improved by >2.5-fold when the redox-couple was separated.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1304
Author(s):  
Yung-Sheng Yen ◽  
Velu Indumathi

A series of novel double-anchoring dyes for phenoxazine-based organic dyes with two 2-cyanoacetic acid acceptors/anchors, and the inclusion of a 2-ethylhexyl chain at the nitrogen atom of the phenoxazine that is connected with furan, thiophene, and 3-hexylthiophene as a linker, are used as sensitizers for dye-sensitized solar cells. The double-anchoring dye exhibits strong electronic coupling with TiO2, provided that there is an efficient charge injection rate. The result showed that the power conversion efficiency of DP-2 with thiophene linker-based cell reached 3.80% higher than that of DP-1 with furan linker (η = 1.53%) under standard illumination. The photovoltaic properties are further tuned by co-adsorption strategy, which improved power conversion efficiencies slightly. Further molecular theoretical computation and electrochemical impedance spectroscopy analysis of the dyes provide further insight into the molecular geometry and the impact of the different π-conjugated spacers on the photophysical and photovoltaic performance.


Author(s):  
Canpu Yang ◽  
Peng Song ◽  
Reda El-Shishtawy ◽  
Fengcai Ma ◽  
Yuanzuo Li

To explore high efficiency dye-sensitized solar cells (DSSCs), two experimentally derived (single fence and double fence porphyrins) and two theoretically designed zinc porphyrin molecules with D-D-π-A-A configurations were studied. Density...


2014 ◽  
Vol 2 (29) ◽  
pp. 11229-11234 ◽  
Author(s):  
Xiongwu Kang ◽  
Junxiang Zhang ◽  
Anthony J. Rojas ◽  
Daniel O'Neil ◽  
Paul Szymanski ◽  
...  

A D–A–π–A′ dye for dye-sensitized solar cells was synthesized via sequential C–H direct arylation; the photovoltaic performance was enhanced by deposition of additional dye on TiO2


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Satbir Singh ◽  
Amarpal Singh ◽  
Navneet Kaur

The present research study focuses upon the synthesis, characterization, and performances of optoelectronic properties of organic-inorganic (hybrid) ZnO based dye sensitized solar cells. Initially, polymer dye A was synthesized using condensation reaction between 2-thiophenecarboxaldehyde and polyethylenimine and was capped to ZnO nanoparticles. Size and morphology of polymer dye A capped ZnO nanoparticles were analyzed using DLS, SEM, and XRD analysis. Further, the polymer dye was added to ruthenium metal complex (RuCl3) to form polymer-ruthenium composite dye B. Absorption and emission profiles of polymer dye A and polymer-ruthenium composite dye B capped ZnO nanoparticles were monitored using UV-Vis and fluorescence spectroscopy. Polymer dye A and polymer-ruthenium composite dye B capped ZnO nanoparticles were further processed to solar cells using wet precipitation method under room temperature. The results of investigations revealed that, after addition of ruthenium chloride (RuCl3) metal complex dye, the light harvesting capacity of ZnO solar cell was enhanced compared to polymer dye A capped ZnO based solar cell. The polymer-ruthenium composite dye B capped ZnO solar cell exhibited good photovoltaic performance with excellent cell parameters, that is, exciting open circuit voltage (Voc) of 0.70 V, a short circuit current density (Jsc) of 11.6 mA/cm2, and a fill factor (FF) of 0.65. A maximum photovoltaic cell efficiency of 5.28% had been recorded under standard air mass (AM 1.5) simulated solar illuminations for polymer-ruthenium composite dye B based hybrid ZnO solar cell. The power conversion efficiency of hybrid ZnO based dye sensitized solar cell was enhanced by 1.78% and 3.88% compared to polymer dye A (concentrated) and polymer dye A (diluted) capped ZnO based dye sensitized solar cells, respectively. The hybrid organic/inorganic ZnO nanostructures can be implemented in a variety of optoelectronic applications in the future of clean and green technology.


Sign in / Sign up

Export Citation Format

Share Document