scholarly journals Efficiency Investigations of Organic/Inorganic Hybrid ZnO Nanoparticles Based Dye-Sensitized Solar Cells

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Satbir Singh ◽  
Amarpal Singh ◽  
Navneet Kaur

The present research study focuses upon the synthesis, characterization, and performances of optoelectronic properties of organic-inorganic (hybrid) ZnO based dye sensitized solar cells. Initially, polymer dye A was synthesized using condensation reaction between 2-thiophenecarboxaldehyde and polyethylenimine and was capped to ZnO nanoparticles. Size and morphology of polymer dye A capped ZnO nanoparticles were analyzed using DLS, SEM, and XRD analysis. Further, the polymer dye was added to ruthenium metal complex (RuCl3) to form polymer-ruthenium composite dye B. Absorption and emission profiles of polymer dye A and polymer-ruthenium composite dye B capped ZnO nanoparticles were monitored using UV-Vis and fluorescence spectroscopy. Polymer dye A and polymer-ruthenium composite dye B capped ZnO nanoparticles were further processed to solar cells using wet precipitation method under room temperature. The results of investigations revealed that, after addition of ruthenium chloride (RuCl3) metal complex dye, the light harvesting capacity of ZnO solar cell was enhanced compared to polymer dye A capped ZnO based solar cell. The polymer-ruthenium composite dye B capped ZnO solar cell exhibited good photovoltaic performance with excellent cell parameters, that is, exciting open circuit voltage (Voc) of 0.70 V, a short circuit current density (Jsc) of 11.6 mA/cm2, and a fill factor (FF) of 0.65. A maximum photovoltaic cell efficiency of 5.28% had been recorded under standard air mass (AM 1.5) simulated solar illuminations for polymer-ruthenium composite dye B based hybrid ZnO solar cell. The power conversion efficiency of hybrid ZnO based dye sensitized solar cell was enhanced by 1.78% and 3.88% compared to polymer dye A (concentrated) and polymer dye A (diluted) capped ZnO based dye sensitized solar cells, respectively. The hybrid organic/inorganic ZnO nanostructures can be implemented in a variety of optoelectronic applications in the future of clean and green technology.

2014 ◽  
Vol 32 (4) ◽  
pp. 547-554 ◽  
Author(s):  
Hatem El-Ghamri ◽  
Taher El-Agez ◽  
Sofyan Taya ◽  
Monzir Abdel-Latif ◽  
Amal Batniji

AbstractThe application of natural dyes extracted from plant seeds in the fabrication of dye-sensitized solar cells (DSSCs) has been explored. Ten dyes were extracted from different plant seeds and used as sensitizers for DSSCs. The dyes were characterized using UV-Vis spectrophotometry. DSSCs were prepared using TiO2 and ZnO nanostructured mesoporous films. The highest conversion efficiency of 0.875 % was obtained with an allium cepa (onion) extract-sensitized TiO2 solar cell. The process of TiO2-film sintering was studied and it was found that the sintering procedure significantly affects the response of the cell. The short circuit current of the DSSC was found to be considerably enhanced when the TiO2 semiconducting layer was sintered gradually.


2014 ◽  
Vol 1008-1009 ◽  
pp. 78-81
Author(s):  
Nair Gomesh ◽  
Z. M. Arief ◽  
Syafinar Ramli ◽  
M Irwanto ◽  
Y. M. Irwan ◽  
...  

Dye Sensitized Solar Cells (DSSC) is another kind of solar cell from the third generation that forms a photovoltaic. DSSC is designed to reduce cost from usage of expensive material in conventional solar panels. The purpose of this project is to fabricate and compare dye sensitized solar cells (DSSC) by using organic dye from blueberry and blue dye from chemical substances. The DSSC is fabricated using ‘Doctor Blade’ method. Results are based on investigating the electrical performance and characteristic of the fabricated TiO2 solar cell based on these comparisons of dyes in order to investigate the potential of organic dyes as a light absorbing mechanism. The required data that is investigated are the open circuit voltage, Voc, short circuit current, Isc, fill factors, solar cells efficiency and UV absorption. Result shows good potential in the blueberry dyes as a sensitizer but further investigation is needed in order to fully understand the characteristic of these organic dyes.


Author(s):  
Sevil ŞENER

The synthesis and spectroscopic characterization of an innovative ball-type cobalt (II)  metallophthalocyanine 4, bridged by four 1,2-bis(2-hydroxymethyl)-O-carborane (HMOC) 1 units has been achieved. The structure of 4 was characterized via elemental analysis, UV–visible absorption spectroscopy, FT-IR spectroscopy, and MALDI-TOF mass spectrometry. The photovoltaic performance of the newly synthesized compound in dye-sensitized solar cells was investigated. In order to clarify the effect of dye-sensitization time on photovoltaic performance parameters, the sensitization time was varied from 12 to 60 h and the performance parameters were investigated. It was found that sensitization time had a strong effect on the main performance parameters. The best photovoltaic performance was achieved after sensitization for 36 h (short circuit current density, 6.41 mA cm−2; overall conversion efficiency, 3.42%). Geometry optimization of the molecule was performed using density functional theory and shows a peripheral structure.


RSC Advances ◽  
2015 ◽  
Vol 5 (121) ◽  
pp. 100159-100168 ◽  
Author(s):  
Gentian Yue ◽  
Guang Yang ◽  
Fumin Li ◽  
Jihuai Wu

A much higher photovoltaic performance of a dye-sensitized solar cell with a (P-A) Gr/NiCo2O4 counter electrode is achieved than that of a Pt configuration device.


2015 ◽  
Vol 787 ◽  
pp. 3-7 ◽  
Author(s):  
S. Karuppuchamy ◽  
C. Brundha

We demonstrated the construction and performance of dye-sensitized solar cells (DSCs) based on nanoparticles of TiO2coated with thin shells of MgO by simple solution growth technique. The XRD patterns confirm the presence of both TiO2and MgO in the core-shell structure. The effect of varied shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that MgO shells of all thicknesses perform as barriers that improve open-circuit voltage (Voc) of the DSCs only at the expense of a larger decrease in short-circuit current density (Jsc). The energy conversion efficiency was greatly dependent on the thickness of MgO on TiO2film, and the highest efficiency of 4.1% was achieved at the optimum MgO shell layer.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Joe Otsuki ◽  
Yusho Takaguchi ◽  
Daichi Takahashi ◽  
Palanisamy Kalimuthu ◽  
Surya Prakash Singh ◽  
...  

We have prepared a novel piperidine-donor-substituted perylene sensitizer, PK0002, and studied the photovoltaic performance in dye-sensitized solar cells (DSSCs). Physical properties and photovoltaic performance of this new perylene derivative PK0002 are reported and compared with those of unsubstituted perylene sensitizer, PK0003. PK0002, when anchored to nanocrystalline TiO2 films, achieves very efficient sensitization across the whole visible range extending up to 800 nm. The incident photon-to-current conversion efficiency (IPCE) spectrum was consistent with the absorption spectrum and resulted in a high short-circuit photocurrent density (Jsc) of 8.8 mA cm-2. PK0002 showed higher IPCE values than PK0003 in the 520–800 nm region. Under standard AM 1.5 irradiation (100 mW cm-2) and using an electrolyte consisting of 0.6 M dimethylpropyl-imidazolium iodide, 0.05 M I2, 0.1 M LiI, and 0.5 M tert-butylpyridine in acetonitrile, a solar cell containing sensitizer PK0002 yielded a short-circuit photocurrent density of 7.7 mA cm-2, an open-circuit photovoltage of 0.57 V, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 3.1%.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yiming Chen ◽  
Haiyan Zhang ◽  
Yuting Chen ◽  
Jiapeng Lin

Carbon nanocomposite electrodes were prepared by adding carbon nanotubes (CNTs) into carbon black as counterelectrodes of dye-sensitized solar cells(DSSCs). The morphology and structure of carbon nanocomposite electrodes were studied by scanning electron microscopy. The influence of CNTs on the electrochemical performance of carbon nanocomposite electrodes is investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Carbon nano composite electrodes with CNTs exhibit a highly interconnected network structure with high electrical conductivity and good catalytic activity. The influence of different CNTs content in carbon nanocomposite electrodes on the open-circuit voltage, short-circuit current, and filling factor of DSSCs is also investigated. DSSCs with 10% CNTs content exhibit the best photovoltaic performance in our experiments.


2020 ◽  
Vol 26 (1) ◽  
pp. 37-45
Author(s):  
Sevil Şener

AbstractThe synthesis and spectroscopic characterization of an innovative ball-type cobalt metallophthalocyanine 4, bridged by four 1,2-bis(2-hydroxymethyl)-O-carborane (HMOC) 1 units, has been achieved. The synthesized compound 4 was characterized structurally and electronically using elemental analysis, UV-Vis absorption spectroscopy, FT-IR spectroscopy, MALDI-TOF mass spectrometry, EPR spectroscopy and magnetic susceptibility. The photovoltaic performance of the newly synthesized compound in dye-sensitized solar cells was investigated. In order to clarify the effect of dye-sensitization time on photovoltaic performance parameters, the sensitization time was varied from 12 to 60 h and the performance parameters were investigated. It was found that sensitization time had a strong effect on the main performance parameters. The best photovoltaic performance was achieved after sensitization for 36 h (short circuit current density, 5.41 mA cm−2; overall conversion efficiency, 3.42%). Computational UV-Vis absorption spectra of the molecule was calculated using time dependent density functional theory and was found consistent with measured UV-Vis spectra.


2010 ◽  
Vol 1270 ◽  
Author(s):  
Xu Wang ◽  
Haiyou Yin ◽  
Bao Wang ◽  
Lifeng Liu ◽  
Yi Wang ◽  
...  

AbstractA novel ZnO/TiO2 assorted photoelectrode for dye-sensitized solar cells (DSSCs) is proposed. The impacts of the ZnO/TiO2 assorted photoelectrode on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were investigated. The measurements of the light transmission spectra showed the higher transmittance through ZnO/FTO than through FTO during the effective wavelength region of 536nm˜800nm for DSSCs, indicating that ZnO/TiO2 assorted photoelectrode is beneficial for the photovoltaic performance of DSSCs. The measurements on the photovoltaic characteristics of the DSSC cell indicate that the inserted ZnO layer can cause the increased open circuit voltage (Voc) more than 70 mV and fill factor (FF) but the decreased short circuit current. The enhanced Voc and FF could be attributed to the suppressed the recombination of photon-generated carriers between the ZnO/TiO2 assorted photoelectrode and electrolyte (dye) compared to TiO2 photoelectrode. However, the additional series resistance of inserted ZnO layer causes the reduced short circuit current. The optimized conversion efficiency can be achieved in the DSSC with ZnO/TiO2 assorted photoelectrode by using low series resistance of ZnO layer.


2014 ◽  
Vol 705 ◽  
pp. 320-323 ◽  
Author(s):  
Jung Eun Nam ◽  
Hyo Jeong Jo ◽  
Dae Ho Son ◽  
Dae Hwan Kim ◽  
Jin Kyu Kang

Anti-reflective (AR) layers play an important role in boosting the amount of light entering a device and reducing reflection losses in a device, thereby enhancing the power conversion efficiency of solar cells. We have coated an AR layer on the surface of a dye-sensitized solar cell device by using an electron beam evaporation system and investigated the effects of the AR layer by measuring photovoltaic performance. The AR layer is found to increases the Jsc and η of the solar cell.


Sign in / Sign up

Export Citation Format

Share Document