Study on the Bearing Mechanism of Bucket Foundation for Offshore-Wind Turbine in Soft Clay

2011 ◽  
Vol 71-78 ◽  
pp. 1795-1804
Author(s):  
Jian Feng Wang ◽  
Hai Tao Dai ◽  
Ming Qin

Based on numerical platform of large-scale finite element software, this paper investigates the function mechanisms of vertical load, horizontal load, and bending moment load of soft-clay-base bucket foundation. Then the corresponding load bearing characteristics of each load type of soft-clay-base bucket foundation are determined.

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4370 ◽  
Author(s):  
Lian ◽  
Jiang ◽  
Dong ◽  
Zhao ◽  
Zhao

The dynamic impedances of foundation play an important role in the dynamic behavior and structural stability of offshore wind turbines (OWT). Though the behaviors of bucket foundation, which are considered as a relatively innovative foundation type under static loading, have been extensively investigated, the corresponding dynamic performances were neglected in previous research. This study focuses on the dynamic impedances of wide-shallow bucket foundations (WSBF) under the horizontal and rocking loads. Firstly, the numerical model was established to obtain the dynamic impedances of WSBF using the coupled finite-infinite element technique (FE-IFE). The crucial parameters affecting the dynamic responses of WSBF are investigated. It is shown that the skirt length mainly affects the rocking dynamic impedance and the diameter significantly affects the horizontal and coupling impedances, especially when the diameter is larger than 34 m. The overall dynamic responses of WSBF are profoundly affected by the relative soil thickness and the multi-layer soil stiffness. Additionally, dynamic impedances of WSBF are insensitive to the homogeneous soil stiffness. Lastly, the safety threshold curve was calculated according to the OWT, which can provide essential reference for the design of the OWT supported by large scale WSBF.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2487 ◽  
Author(s):  
Puyang Zhang ◽  
Yan’e Li ◽  
Yajun Lv ◽  
Hongyan Ding ◽  
Conghuan Le

The composite bucket foundation for offshore wind turbine bears the vertical load from not only the superstructure and the horizontal load, caused by wind and wave, but also from the torque load caused by rotating structures, such as blades. Based on layered soil foundation, the influence of the skirt height, the friction coefficient between soil and bucket foundation and the diameter of the bucket foundation on the stress of the bucket skirt under the torque load are studied in this paper. Moreover, the envelope curves of the bearing capacity of H–T and V–H–T are obtained by the fixed displacement ratio loading method. The bearing capacity characteristics of composite bucket foundation under different loading combinations are analyzed. The results show that: (1) The effect of inside soil on the bucket skirt is greater than that of the outside soil; (2) when composite loads are applied, the torque-bearing capacity decreases slowly with the increase of horizontal force, and when the horizontal force increases to a certain value, the value of the torque decreases significantly; and (3) the shape of the H–T failure envelope of the bucket foundation has no obvious change, vertical load have less effect on horizontal and torque load.


2018 ◽  
Vol 25 (s3) ◽  
pp. 43-53 ◽  
Author(s):  
Desen Kong ◽  
Meixu Deng ◽  
Yi Liu ◽  
Xiaoyan Tan

Abstract To study the force and deformation characteristics of subsea mudmat-pile hybrid foundations under different combined loads, a project at a water depth of 200 m in the South China Sea was studied. A numerical model of a subsea mudmatpile hybrid foundation is developed using the numerical simulation software FLAC3D. The settlement of the seabed soil, the bending moments of the mudmat, and the displacements and bending moments along the pile shaft under different load combinations, including vertical load and horizontal load, vertical load and bending moment, and horizontal load and bending moment load, are analyzed. The results indicate that settlement of the seabed soil is reduced by the presence of piles. The settlement of the mudmat is reduced by the presence of piles. Different degrees of inclination occur along the pile shaft. The angle of inclination of pile No. 1 is greater than that of pile No. 2. The dip directions of piles No. 1 and No. 2 are identical under the vertical load and bending moment and are opposite to those under the other combined loads. The piles that are located at the junctions between the mudmat and the tops of the piles are easily destroyed.


2021 ◽  
Vol 235 ◽  
pp. 109387
Author(s):  
Jijian Lian ◽  
Junni Jiang ◽  
Xiaofeng Dong ◽  
Haijun Wang ◽  
Huan Zhou

2021 ◽  
Vol 33 (5) ◽  
pp. 195-202
Author(s):  
Jeong Seon Park

Offshore wind turbine (OWT) receive a combined vertical-horizontal- moment load by wind, waves, and the structure’s own weight. In this study, the bearing capacity for the combined load of the suction foundation of OWT installed on the sandy soil was calculated by finite element analysis. In addition, the stress state of the soil around the suction foundation was analyzed in detail under the condition that a combined load was applied. Based on the results of the analyses, new equations are proposed to calculate the horizontal and moment bearing capacities as well as to define the capacity envelopes under general combined loads.


Sign in / Sign up

Export Citation Format

Share Document